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ABSTRACT

New entanglement perspective on the nature of the chemical bond is reached by employment
of the (sub)quantum Bohm potential with the chemical action at whatever level of chemical
interaction, from atoms to molecules to macromolecules and biological activity; the classical
influence is proved as an omnipresent counterpart to quantum events in bonding.
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1. INTRODUCTION

It was the quantum mechanics promise that the Chemistry is complete with the wave
function description of the electronic structures. Unfortunately, the Dirac’s prophecy was not
yet completed since the most inherent concept and reality of chemical interaction seems to
elude the quantification: the chemical bond. Although many extensions of the Schrodinger
equation were made in order to asses the many electronic ground and interaction states
throughout either the variational or perturbation or even variational-perturbation methods [1],
there resulted that the chemical bonding is situated at the edge of the quantum and classical
worlds so that no precise quantification neither a complete intuitive classical picture of it can
be provided at a single level of interaction. However, after consuming the Hartree-Fock-
Roothaan-Slater quantum chemical age [2], including the Pariser-Parr-Pople (PPP) molecular
model [3], while arriving at the density functional theory of chemical bonding [4], the nature
of chemical bond was unveiled with respect of many features of strength and localization
however still leaving space in clarifying the legitimate connection (or correlation) between
the structural distribution of electrons and their manifestation as global properties by means
of reactivity indices for which the most preeminent stands the electronegativity y and

chemical hardness 77 [S]. Moreover, the attempt to even treat the bio- or macro-molecular
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2. CHEMICAL ENTANGLEMENT

At the electronic level the generalized Schrédinger-de Broglie-Vigier-Bohm
function [6] e

¥(x,1) = Rexp(i%) = p(x,1)"? exp[é( px— Et)J

is firstly employed in terms of its amplitude R and phase (action) S to lead with the quantum-
classical conservation equation of forces:

Z F classic + Z F quantum = O
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with

while the (sub)quantum potential

9

is responsible for the long-range or asymptotical (chemical) interaction since its non-
vanishing structure in R ~ ¥ . Such a paradox reveals a hidden reality of interaction that
should be responsible for the delocalization interaction in chemical systems, lighting on
aromaticity concept [7], being however incompatible with the light velocity limitation of
relativity theory [8]. Fortunately, such dichotomy was recently surpassed by reconside.ri"g
both the special relativity and quantum (algebraically) chemistry within the over-lfght
velocity (or two steep light) mechanism when considering the wave package propagation In a
real space-time framework [9]. Such ideas root in late de Broglie thoughts and may constitl{te
the foreground of reconsidering the electronic wave-corpuscular manifestation in both Its

propagation and eigen-states [6b]. Eventually, it may lead with the closed loop quantification
of charges [§):

(;‘:’ dx = tﬂVSlL/x = tj‘/lllx

nh = AS = {dS =
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towards the bonding stage through the conservation of the exchanged electrons by the atoms-
in-molecules Gaussian law respecting the bonding basin (with surface area ):

with the density of the charge current given by the hydrodynamic expression [8]:

2

_=pv
m m

where the total number of involved electrons N fulfills the consecrated density functional
relationship [4, Sa-d]:

N:Ipdr.

In these conditions, the chemical bond stage can be unfolded by means of Stokes
transformation of the loop charged quantification above to its open charge flux thus
establishing the chemical interaction quantification:

nh=" (Vxj)ds.
Pz

Nevertheless, this so called chemical entanglement can be further considered at the global

level through employing the electronic density o and quantum potential ¥, 4, in the so

called entangled chemical action functional

hz
C5" = [P}V o (¥)dT = ——— [p'"2(x)V? "% (x)dx

this way providing the second level for the chemical bonding comprehension: the density
functionals realm emphasizing on the necessity of considering density gradient expansion in
chemical bonding characterization. This is nothing less than the inclusion of the Heisenberg
delocalization principle in bonding formation and stabilization. Again, the quantum paradox
arises since the bonding stabilization involves the electronic delocalization.

Nevertheless, the above quantum-classical force balance in chemical interaction at the
level of forces can be further specialized at the level of chemical action functional which is
nothing else than the observable of the potential involved; it provides the entangled equation
of the electronic density:
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were the adequate Laplacian-type chemical action
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preserves the wave nature of the electronic movements throy
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3. BIOACTIVITY ENTANGLEMENT

Going to the next level of chemical bonding the li
enzyme (S-E) interactions are treated is such that the q
biomolecular reactions can be visualised by combining th
rate (Kcy) and temperature (T) with that between the react
the effective time of reaction (At) via Heisenberg relation,

gand-receptor (L-R) or substrate-
uantum (fluctuating) nature of the
e relationship between the catalytic
ion rate and the turnover number or

1 h h
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while considering entangled tunnelling energy as

ent

AEIunnellmg = z Cfcilass - Z Cftm = IP(X)[Z Velass (%) — Z Vqua (x)]a'T

with kg the Boltzmann constant. Of course, in last relation, the equivalence between qualnt;z1
statistics and quantum mechanics was physically assumed when equating t.he tfleff;‘?m ne
quantum (tunnelling) energies, k gI and AE | respectively. Nevertheless, it is thlls. p e s0
basis of start rethinking upon the static character of the energetic barrier, recalliné “=

ithin
. . lysis [10]’ wi
called steady state approximation, usually assumed in modeling enzyme cataly
the transition state theory (TST):
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delivering the ligand-receptor equation for its (macroscopic) concentration [L - R] in terms of
the stationary flux quantum-classical electronic density.

Finally, various chemical reactivity pathways may be combined to eventually produce the
biological activity with which to (statistically) correlate specific structural (quantum or
topological) descriptors. Each such correlation should correspond to a certain molecular
mechanism towards biological actions and can macroscopically be quantified through a norm

"0“ and a statistical factor r, while for a given or measured activity the chemical-biological

interaction is associated with the least path principle fulfilled, i.e. the variational optimum
ergodic condition across different possible or potentially active molecular mechanisms [11]

o 4 B =0, A & B: biological endpoints;
[ U=l -)M,r)} g p

it stands as a macroscopic reflection of the quantum tunneling or entanglement structural
(thus intimate and somehow hidden) interaction. However, also the least path principle can be
further rewritten in terms of above entangled electronic density as the generalized Bader zero-
flux condition of atoms-in-molecules [12] applied on biomolecular bonding maps:

ent —
VpL_R (x,t)-n=0,
yielding the chemical action classical conservation relation for the bioactivity entanglement

szczlass(L,R) (x) + ZVZC;nI(L,f) (x) =0 .
L,R

LR

as a natural chemical (inter)action counterpart of the above classical-quantum force balance in

electronic structures.

4. CONCLUSION

There was proved that at any level of chemical interaction the classical and quantum
facets of reality interfere in a unique manner such that to either assure the wave nature of the
grounding electronic structure as well the corpuscular manifestation of it through observable
(measurable) quantities. There results that such classical-quantum combination makes so
much fascination on the chemical bonding world whereas hindering with the same degree the
mysteries of life and of its creation.
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