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Abstract 
      In the history of chemistry, the revolutionary 
concepts of quantum mechanics lead with both 
conceptual and innovative understanding and 
designing of molecular structures. In this review, we 
would like to survey the main references in this rich 
and fascinating field of bonding knowledge. In this 
respect, the intensive level of chemical bonding such as 
the Schrödinger many-electronic-poly-nuclei problem 
is firstly approached under the consecrated Hartree-
Fock (HF), Roothaan and Kohn-Sham Self-Consistent 
Field (SCF) quantum frames. The localization problem 
is considered as the next level, in which context both 
the orbital and density localization functions are 
discussed. Finally, the chemical reactivity is indexed

 
Correspondence/Reprint request: Dr. Mihai V. Putz, Chemistry Department, West University of Timisoara, Pestalozzi 
Street No.16, Timisoara, RO-300115, Romania. E-mail: mv_putz@yahoo.com or mvputz@cbg.uvt.ro 



 Mihai V. Putz & Adrian Chiriac 2

through the global density functionals of electronegativity and chemical 
hardness and of the associate principles. A study case of the particular series of 
acidic halogens in reactions with hydrogen peroxide is undertaken at each level 
of chemical bond characterization. It is found that the quantitative structure-
property (activity) multi-linear relationships - QSP(A)Rs - may be faithfully 
employed aiming to unify the levels of chemical bonding in single equation. 
 
1. Introduction 
 Quoting Roald Hoffmann: “There is nothing more fundamental to 
chemistry than the chemical bond” and still, according with Charles A. 
Coulson: “It does not exist. No one has ever seen one. No one ever can. It is a 
figment of our own imagination”. Just like the millenary search for the Holy 
Grail, the revelation of the engines that promote, hold and activate a molecular 
structure remains a permanent challenge for the human intelligence. Shortly, it 
is worth noting the seminal contributions of the dualist theory of Berzelius 
(1819) advancing for the first time the idea of electrostatic interaction between 
two opposite charged atoms in defining chemical bonding. However, without 
taking into account the causes of the charges involved, the theory fails to 
explain the bonding between two identical atoms, as well as the plethora or 
organic compounds. It was the unitary theory of Dumas (1834) that solves the 
dichotomy by assuming the bonding forces to be of the same kind whatever the 
component atoms considered may be. Nevertheless, each of these theories 
assesses, in fact, a specific type of the chemical bond, the ionic and covalent 
ones, respectively. Still, Pandora’s Box was opened when the very connection 
between these two extremes was hidden under the inorganic and organic 
roughly classification of the chemical compounds. Despite the efforts of star 
chemist as Kekulé [1], Couper [2], Butlerov [3], van’t Hoff [4], Le Bel [5] or 
Werner [6] in the second part of the XIX century to elucidate the structural 
constitution of molecules on conceptual grounds, the history of chemical 
bonding remains with the concept of valence as another mysterious benchmark 
of the nature’s mode of action.   
 Then, wile the first half of the XX century brings to light the quantum theory 
of matter, the subsequent searches of accommodating the valence concepts with 
the quantum principles dominate the conceptual chemistry through the 
cornerstone works of Lewis [7], Kossel, Heitler and London [8,9], Pauling 
[10,11], Mulliken [12], Hund [13], Hückel [14,15], Herzberg [16], Schrödinger 
[17], Dirac [18] and Slater [19]. It follows that the chemical bond widescreen can 
be summarized as the inter-connections between the four fundamental types of 
bonds: covalent, ionic, metallic, and van der Waals, see Figure 1. At this point, it 
is worth noting the seminal contribution of Lewis (1916) through his “The   
Atom and the Molecule” work [7], where the chemical intuition overwhelms   the 
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Figure 1. Sketch of the conceptual unity of the covalent, ionic, metallic and van der 
Waals chemical bonds throughout the quantum concepts of localization, polarization, 
delocalization, and exchange interactions, respectively. 
 
already three-year old Bohr Theory of hydrogenic atoms [20, 21] by 
introducing the surreal concept of “cubical atom”. Although, at first sight, such 
a paradigm may seem strange now, there it was the first affirmation of the 
necessity that the atom itself has to be assumed with an inherent structure, viz. 
orbitals, of symmetry types different even circumvented by the spherical one. 
Such intuition was, more than ten years later, confirmed when the Schrödinger 
equation was analytically solved for the hydrogenic atoms and recovering the 
Bohr’s energy in addition to the celebrated orbital functions [17].  
 Moreover Lewis’ lone and bond pair or electrons, abstracted from its 
“cubical atomic” combinations through connecting of their edges with 
electronic occupancy between 0 and 2, becomes the main “lingua franca” of 
chemical bonding analysis leading to the disputed concepts of bonding 
localizations both at the orbital (intensive) and functional (global) approaching 
levels. However, the atomic structure was afterwards found as the key of both 
explaining the atomic periodicities, i.e. recovering and definitely certifying the 
Mendeleyev systematic arrangement of the elements in its table, and providing 
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the quantitative tools, i.e. atomic orbitals, with the help of which the entire 
molecular panorama seems to be on the way of unfolding. The fundamental 
works of Hartree [22], Fock [23], Roothaan [24], again Slater [25], and Kohn 
[26,27] further enlightened the quantum nature of the chemical bond at the 
intensive level of electronic spin-orbitals.            
 Consequently, from the second part of the XX century nowadays the first 
rate scientifically research has been focused mainly on the synergistic quantum 
approaches to the structure and properties of the natural complex systems, i.e. 
the polyatomic and biomolecular ones [28].  
 While pure physics struggled on the great unification paradigm through the 
fundamental forces in nature, "being subject, in the last decade, to a continuous 
reform, a similar attitude is now emerging in chemistry, at the quantum level of 
representation, related to the existing natural chemical bonds. However, because 
the types of the chemical bonds coexist in various degrees and combinations in 
the organization of the matter, only a unitary quantum treatment, based on the first 
physical-chemical principles, can release an estimation of the structure-properties 
correlations across the complex natural nano-systems: metals, clusters, fullerenes, 
liquid crystals, polymers, ceramics, biomaterials, metaloenzymes [29-36]. 
 This way, a unitary picture to link and flexibly adapt the quantum mechanical 
formalisms at the chemical bonding problem was intensively studied [28]. Still, 
with the belief that the unification of the chemical bonds can be achieved through a 
single equation or force [37] we advance in this work the iterative link between the 
intensive, local and global levels of chemical bond in a unitary presentation.  
 
2. Intensive level of quantum chemical bond 
 Very often, the famous words of Dirac, i.e.”The underlying physical laws 
necessary for the mathematical theory of a large part of physics and the whole of 
chemistry are thus completely known”, are quoted by theorists in physics when 
they like to underline that chemistry is in principle solved by the basics of 
quantum mechanics so that some more interesting problems should be solved. 
Despite this, from 1929 nowadays, quantum physics of atoms and molecules 
largely turns into quantum chemistry, an interdisciplinary discipline that still 
struggles with the elucidation of the actual behaviour of electrons in nano- and 
bio- systems. While the total success is still not in sight, the achievements in the 
arsenal of concepts, principles, and implementation was considerable and already 
enters goes into the arsenal of humankind hall-of-fame giving thus hope for a 
shining dawn in the poly-electronic interaction arena [38-82]. However, when 
questing for the underlying principles of the chemical bond, the first compulsory 
level of expertise may be called as the intensive level of analysis in which the 
main ingredients of a many-electronic-many-nuclear problem has to be clarified. 
These are subjected in the below following sections.      
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2.1. Molecular orbital approach 
 The basic starting point is the consecrated time-independent Schrödinger 
equation 
 

Ψ=Ψ
∧

EH                 

(1) 
                                                                                                         
with non-relativistic Hamiltonian 
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accounting for the electron kinetic, nuclear kinetic, electron-electron repulsion, 
electron-nuclear attraction and nuclear-nuclear repulsion energetic terms, 
respectively. 
 Of course, as it is, equation (1) cannot be solved exactly, in its most 
general way. The approximations have to be implemented in such a way as to 
include the specific reality of the dynamic electronic-nuclear system. In this 
respect, considering an approximation is not viewed as a limitation here, but 
rather as a sort of rescaling of the concerned issue. Epistemologically, it is 
equivalent with Descartes’ scholastic methodology of reducing a problem to 
smaller problems through the method of analysis. Such a procedure has been 
long verified in mathematical-physics with impressive practical applications, 
e.g. the integral-differential recipes, and with be thus safely implemented also 
here without loss in generality of the basic problem.   
 In quantum chemistry the specific method was consecrated as Born-
Oppenheimer approximation that separate the electronic-nuclear system and 
problem in two smaller parametrically linked subsystems associated with an 
electronic motion, defined by equations 
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 It is worth noting that this phenomenological separation of electronic and 
nuclear problems may be possible due to the impressive difference in their 
mass that practically fixes the nuclei as the reference system in which the 
electronic system evolves. This is, nevertheless, only the first and most straight 
(however appropriate) approximation considered upon a many-body (electrons 
and nuclei) problem [55-82].  
 As a consequence, two stages of the overall solution can be given. One is 
obtained when solving the electronic problem only, therefore producing the so 
called single-point calculation, i.e. the clamped nuclei remaining in a single 
inter-position.  
 The next stage is when replacing the electronic coordinates by their 
average values, since they move much faster than the nuclei, solving the 
nuclear Schrödinger equation (4) thus furnishing the vibration, rotation and 
translation solutions of a molecule. This way, the so called potential-energy 

surface solution has been provided since 
∧

+ nnAe VRE })({ constitutes the 
potential for the nuclear motion as a whole.     
 While, molecular mechanics methods fairly provides nuclear solution of 
motion the electronic problem remains as the main, first cut, challenge to be 
addressed also because its elucidation leaves the sign also on the electronic 
pairing problem, the cornerstone concept in chemical bonding nature.  
 Thus, focusing only on the electronic Schrödinger equation (3), it can 
further be seen as a composite Hamiltonian, namely  
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for the kinetic and nuclear potential, respectively, on the one hand, and   
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separating the electron-electron contribution, that already feel that has to have 
a specific behaviour, both at classical and quantum levels of manifestations, at 
other hand.  
 Now, moving on to the specific electronic wave functions, let us consider 
the spin-orbitals 
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with their intrinsic ortho-normalized conditions fulfilled, 
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as being one-electron functions or molecular orbitals MO, each as a product of 
a spatial orbital )1(iφ  and a spin function βασ ,)1( = . 
 In these conditions, for a system with N electrons, the trial wave function 
(equivalent with the so called Slater determinant) takes the so called trial 
Hartree-Fock (HF) form: 
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with the Hartree wave function as simple product of spin-orbitals (the so called 
orbital approximation) 
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and the antisymmetrisation operator 
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having Hermitian and commutation properties: 
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respectively. 
 This way, we formally succeed to further separate the many-electronic 
problem in as many one-electronic problems as electrons are considered in the 
molecular system.  
 From now on, basically, one can solve the many-electronic equation by 
manipulating the one-electronic properties of the system. How this can best be 
performed, at what cost and under what conditions, will be in next addressed. 
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2.2. Hartree-Fock approach 
 Skipping the reference to the electronic (e) subscripts throughout equations 
(5)-(14), the Hartree-Fock trial functional can firstly be arranged as 
 

HFIIHFHFIHFHFHFHFHF
trial HHHEE ΨΨ+ΨΨ=ΨΨ=Ψ≤
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][0 .        (15) 

 
 The one-electron (core) energetic component of (15) may be successively 
unfolded as: 
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where it was considered that the introduced one-electron effective operator 

)1(
∧

ih  selects from the Hartree wave function (11) the associate spin-orbital, 
for each electron, accordingly. 
 Similarly, the two-electron energetic component of (15) may be 
successively transformed as: 
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resulting in the effective electron-electron repulsion energy once the quantum 
exchange terms Kij are subtracted from the classical Coulombic ones Jij. Here 
we recognize the combined classical (Coulombic) – quantum (exchange) 
effects that appear in the inter-electronic repulsion Hamiltonian term (7).  
 All together, with the results (16) and (17) back in (15), we get for the trial 
Hartree-Fock functional the expression: 
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 In next, we are going to apply the variational principle respecting the variations 
of the spin-orbitals in terms of Lagrange multipliers ijε that widely demands that: 
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 However, by employing the canonical transformation, i.e. the N2 
parameters may be considered as the elements of a Hermitian matrix which 
through a unitary transformation become a diagonal matrix, the outset form of 
the variational principle (19) now reads: 
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 Note that performing a unitary transformation will not affect the average 
of the electronic Hamiltonian but only the HF wave function by a phase factor 
of unity modulus.   
 Under these circumstances, the famous Hartree-Fock equation results from 
the successive equivalent forms: 
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 Still, a more compact form of HF equation (21) may be achieved since 
specific potential notations are introduced. For instance, the electrostatic 
repulsion potential (i.e. the Coulombic interaction) can be shortened as: 
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while for the exchange potential (i.e. non-local interaction) we can define it as 
satisfying the relation: 
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 With these the above HF equation (21) reduces to its most simple form: 
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where the one-electronic Fock operator  
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 Now, since the spin-orbitals satisfies the normalization condition 
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the orbital energies look like: 
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while the total HF energy will take the form: 
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 Remarkably, one can clearly see that the predicted HF energy (29) differs 
from the simple sum over the HF orbital energies (30) by the effective 
electron-electron interaction energy Uee.  
 
2.3. Roothaan approach 
 Usually, the HF method becomes computationally expensive if not almost 
impossible to apply for the most macro-molecules. At this point the great 
achievement of computational chemistry was to consider the finite expansion 
of the one-electron spin-orbitals of the HF equation (24), in terms of some set 
of fixed one-electron basis function or basis set: 
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 Since the basis set may be chosen as being composed of hydrogenic-like 
functions centered in one atom one can say that the molecular orbitals have 
been expanded in terms of linear combination of atomic orbitals (LCAO). 
 In these conditions, submitting the LCAO-MO in the above HF equation (24), 
multiplying at left by *

µφ  and integrating one finds the so called Roothaan equations: 
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which can be arranged in a matrix form, as   
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with the Fock matrix elements 
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together with the overlap matrix ones 
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 The new one-electronic type equations (32) made the history of the 
computational chemistry in the last century since they can be computed either 
from first principles (in which case one says that an ab initio approach was 
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undertaken) or by resorting to experimental data (in which case the 
semiempirical approach was chosen).   
 It is worth noting that the particularization of Roothaan equations to spin up 
(alpha state) or spin down (beta state) through considering different spatial parts of 
the spin-orbitals generates the so called unrestricted Hartree-Fock (UHF) frame of 
analysis. However, it describes the homolitic dissociation products or reactions in 
which the change in spin pairing is allowed. Otherwise, the so called restricted 
Hartree-Fock (RHF) method can be employed whenever one would prefer to use 
orbital energy diagrams with two electrons rather than one electron per orbital.  
 Computationally, the procedure for solving the HF or Roothaan equations 
is self-consistent in the sense that the involved Fock operator depends 
implicitly upon the solutions. This feature is derived from the assumed one-
electron picture in which a single electron would feel the potential influence 
coming from the fixed (or clamped) collection of nuclei and the average effects 
of all other N–1 electrons.  
 Therefore, the basic algorithm solves the one-electron problems 
iteratively: guess the position for each electron (i.e. guess C), then guess the 
average potential that an electron feels from the rest of electrons in the system 
(i.e. guess F), solve the matrix equation (i.e. diagonalize to a new C), form a 
new F, repeat the procedure until the one-electronic wave function becomes 
consistent with the field produced by it and other electrons.    
 Regarding the ab initio methods, they are very effective since an arbitrary 
basis set of LCAO-MO produces accurate results without imposing additional 
approximations.  
 Unfortunately, this method was criticized for this arbitrary degree of freedom, 
arguing that it produces a recipe in which “anything computes everything”.  
 While this endeavour was made in the efforts to discredit the MO 
approach and the orbital concept in general, we believe that atomic orbitals and 
their linear combination provide the set of “elementary properties” of mater on 
which base the whole chemistry can be rationalized based on a single (i.e. the 
eigen value problem) principle, either in Schrödinger, Hartree-Fock, Roothaan 
or Kohn-Sham (see below) approaches.  
 
2.4. About correlation 
 The post self-consistent era was mainly dedicated to the implementation of 
the so nominated correlation energy in the computation.  
 Firstly, it was noticed that a single Slater determinant (on which base the 
current HF analysis was exposed) can never account for a complete description 
of the many-electronic interaction. That is, the correlation energy can be 
introduced as the difference between the exact eigen-value and the Hartree-
Fock energy of the same Hamiltonian for the concerning state: 
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HF
corr EEE −= .            (36) 

 

 The next step was sustained by the assumption that the correlation energy 
can be seen as the perturbation of the self-consistent-field energy which is 
associated with a wave function derived for a single electronic configuration. 
At this point the basic methods of approximation used in quantum chemistry, 
namely the perturbation and variational, can be considered. 
 In the case that perturbation method is employed, assuming the 
unperturbed wave function and energy as the HF solutions the exact eigen-
functions and eigen-values can be written as expanded series   
  

...)2(2)1( +Ψ+Ψ+Ψ=Ψ ee
HF
ee ,        (37a) 

 

...)2(2)1( +++= ee
HF

e EEEE          (37b) 
 

by introducing the ordering parameter . Through truncating the series in the 
second, third or fourth order generates the so called Møller-Plesset MP2, MP3, 
and MP4 perturbative approximations, respectively.  
 On the other side, the linear variational method can be practiced within the 
configuration interaction (CI) approach of the many-electronic wave-function: 
 

...0 +Ψ+Ψ+Ψ+Ψ=Ψ ∑ sdt
abc

sdt
abc

sd
ab

sd
ab

s
a

s

s
a

HF
e

CI
e cccc

         
(38)

    
 

where the 0Ψ ,
s
aΨ , 

sd
abΨ , 

sdt
abcΨ  stands for the ground, single excited, double 

excited, and triple excited N-electron trial wave functions, respectively, for a 
given spin state.   
 While the CI wave function is the subject of the eigen-problem: 
 

 
CI
e

CI
ee EH Ψ=Ψ

∧
0

~

            (39)   
 

the correlation correction to HF energy can be achieved through subtracting 
the HF energy from last equation 
  

CI
ecorr

CI
e

HFCI
e

HF
e EEEEH Ψ=Ψ⎟

⎠

⎞
⎜
⎝

⎛ −=Ψ⎟
⎠

⎞
⎜
⎝

⎛ −
∧

0
~

.        (40) 
 

 However, although, starting from this point, many sophisticated methods for 
wave function expansion, e.g. the coupled cluster approach, multi-configuration 
self-consistent-field method or multi-reference CI methods, have been developed 
[52, 68, 73, 76], the correlation problem faced many computational limitation, 
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some of them almost insurmountable, due to the immense number of integrals 
to be evaluated. 
 
2.5. Density functional approach 
 Fortunately, a completely different approach was invented to overcome 
from a single shoot both the exchange and correlation terms to the total 
electronic energy. That was possible, however with the price of revisiting the 
wave function concept, in fact to contract it into the electronic density: 
 

∑∑
=

=
βασ

σχρ
,

2
)()( rnr i

i
i

            
(41) 

                                                                                           
written in general terms of the fractional occupancy numbers ]1,0[∈in  so that 
[26] 
 

∑∫ ==
i

indrrN )(][ ρρ .           (42) 
                                                                                        
 Note that form the beginning since the introducing of the fractional 
occupation numbers both the concepts of one-orbitals as well as exact N-one-
orbitals have been generalized to fractionally occupied orbitals and to an 
arbitrary number of orbitals, hereafter called as Kohn-Sham orbitals.  This way 
the distinction respecting the Hartree-Fock approach is made in clear.  
 More transparently, within the density functional formalism the trial HF 
energy is replaced by the so called Kohn-Sham (KS) trial functional [27]: 
 

 
][][

2
1][][][ ρρρρρ xcAJ

KS
trial EJCTE +++=

          

(43) 

                                                             
where 
 

⎥
⎦

⎤
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⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ∇−= ∫∑ drrrnT ii

i
iJ )(

2
1)(min][ 2* σσ χχρ ,          (44)

  
                                                           

∫= drrrVC extA )()(][ ρρ               

(45)  
                                                                                             

∫∫= 21
12

21 )()(][ drdr
r

rrJ ρρ
ρ

            

(46)
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stands for the generalized (Janak) kinetic energy [54], chemical action only not 
restricted to the bare potential of the nuclei, and classical Coulombic energy 
functionals, respectively [53].  
 The exchange-correlation energy functional ][ρxcE  replaces in KS trial 
energy both the HF exchange (-1/2)(∑ij ijK ) and the missing correlation terms.   
 As previously presented HF formalism the optimized KS energy is achieved 
through minimizing the trial KS energy respecting the set of spin-orbitals

σχ i : 
 

01)(][
2'

* =
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛ −−∑ ∫

i
i

KS
i

KS
trial

i

drrE σ
σ χερ

δχ
δ

         
(47) 

                                                          
for a fixed set of occupancy numbers in . 
 The intermediate result of the above functional derivation furnishes the 
explicit expression: 
 

)()()(
)(

][
)(

)(
][)()(

2
1 '2 rrVrn

r
E

rn
r

Jrnrn i
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iextii
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iiiiii
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(48) 
 

since the density-wave function link is employed. 
 While for 0≠in  one can set i

KS
i

KS
i n/'εε =  it is now clear that the last 

expression can be rearranged under the form: 
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or, more compactly, under the celebrated Kohn-Sham equation 
  

)()()(
2
1 2 rrrV i

KS
ii

KSeff σσ χεχ =⎥⎦
⎤

⎢⎣
⎡ +∇− ,         (50) 

 

where the Kohn-Sham effective potential  
 

)()()()( ,
,

,
rVdr

rr
rrVrV xcext

KSeff +
−

+= ∫
ρ

         
(51)

  
                                                                     
was introduced in terms of the exchange-correlation potential: 
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)(
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E
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 Finally, performing the sum over the KS orbital energies KS
iε : 

 

∑∑ +∇−=
i

i
KSeff

ii
i

KS
ii rVnn σσ χχε )(

2
1 2

 

                ∫+= drrrVT KSeff
J )()(][ ρρ  

                ∫+++= drrrVJCT xcAJ )()(][][][ ρρρρ ,        (53) 
 
by submitting it in the trial KS energy above the KS total energy can be 
determined: 
 

∫∑ −+−= drrrVEJnE xcxc
i

KS
ii

KS )()(][][
2
1][ ρρρερ

          
(54)

 
 
obtaining that, just as in the HF case, the total electronic energy is not the 
simple sum of orbital energies. 
 It is worth mentioning that the major difference between orbital HF and 
density functional KS methods relies in missing and including of the correlation 
interaction among the electrons in a many-electronic system, respectively. In other 
terms, while in the HF case the Slater determinantal (wave function) is shared 
between interacting and non-interacting versions of a many-electronic system, 
within the KS case the total electronic energy is shared between the correlated and 
non-correlated electrons of the molecule. It is therefore the case to state on the 
conceptual supremacy of the density functional theory inspiring the further use of 
the electronic density as the main tool in quantifying of chemical bonding.  
 

3. Localization level of quantum chemical bond 
 Despite the fact that Hartree-Fock or Kohn-Sham self-consistent field 
(SCF) equations provide in principle the complete set of electronic orbitals that 
describe the multi-electronic-poly-centre bonds, their main drawback is that of 
providing the delocalized description over an entire molecular space. Such an 
analysis has to be accomplished with special techniques through which the 
localized orbitals and localized chemical bond are to be recovered [83-152]. 
Only this way can quantum mechanics provide a viable rationale, i.e. quantum 
chemistry, in chemical bond characterization. Nevertheless, such a rationale 
can be achieved in two ways: one of them involves the orbital transformation 
producing the localized set of orbitals and indices [83-120]; the other one, 
based on electronic density, includes the electronic density, to a certain degree, 
into an electronic localization (super) function - ELF so as to generate a local, 
analytical indication of the electronic pair of the chemical bond [121-152]. In 
what follows, we are going to outline both these major approaches.    
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3.1. Orbital localization 
 Let’s assume that, for instance, after the HF-SCF computation is undertaken 
the set of canonical molecular one-electronic orbitals are determined so that the 
Slater determinantal wave function for 2N electrons with N doubly occupied 
orthonormal real orbitals Nχχχ ,...,, 21  is laid down [83]: 
 

( ) ( ) ( ) ( ) )2()12()2(
1

)1(
1 ...

!2
1 N

N
N

NN
βχαχβχαχ −=Χ .     (55a) 

 
It has to be transformed into the corresponding localization wave function  
 

( ) ( ) ( ) ( ) )2()12()2(
1

)1(
1 ...

!2
1 N

N
N

NN
βλαλβλαλ −=Λ

          
(55b)

                     
 
on the basis of the strictly localized orbitals Nλλλ ,...,, 21 . 
 Fortunately, such orbital transformation is allowed by the flexibility 
carried by the determinantal wave function respecting a unitary transformation 
that takes the canonical into localized orbitals through the matrix (T) 
 

ijji Tχλ = .            (56) 
 

 In order to complete the localization picture some “physical” criterion has 
to be assumed in order that matrix (T) to be determined. Such constraints may 
refer to the maximization of the distance between the electrons of the same 
spatially non-localized orbitals, i.e. the so called Boys condition [86]: 
 

max2 →=∑i ii rSL χχ             (57) 
                                                                                         
in terms of iχ  or, reversely, asking that the energy interaction that equally 
appears in Coulomb and exchange terms be minimized in localized orbitals, 
i.e. the Edmiston-Reudenberg, or orbital localization, condition [95] 
 

min212 →= ∑ −
i ii rOL χχ

              

(58)   
 

for orbitals 
2
iχ , where we have least localization. 

 When employing the last condition one firstly gets: 
 

∑ −== i iii rOL δχχχδ 1240 .            (59) 
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 Next, remembering that a change in delocalized towards localized orbitals 
follows the orthogonal transformation rules: 
 

∑=+ i ininn Tχδχχ            (60) 
 

∑ =n ijjninTT δ .            (61) 
 
Then, assuming that  
 

ijijij tT += δ             (62) 
 
the relations (60) and (61) lead to the first order connections: 
 

∑= i inin tχδχ ,            (63) 
 

0=+ niin tt ,            (64) 
 
respectively.  
 

 It is worth noting that the condition (64) accounts for the anti-symmetries 
of the spatial orbitals in fulfilling Pauli principle. With these, the least 
localization principle (59) can be successively written as: 
 

 ∑ −== ni ninii trOL χχχδ 1240
 

    { }2 1 2 14 n m n m m n mnn m
r r tχ χ χ χ χ χ− −

>
= −∑         (65) 

 

leaving with the delocalization orbital condition: 
 

nmmnmn rr χχχχχχ 1212 −− =
          (66) 

 

that, nevertheless is identical in nature to that associated with the localized 
orbitals: 
 

 nmmnmn rr λλλλλλ 1212 −− =
          (67) 

 

due to the fact that the optimum condition 0=OLδ  do not distinguish between 
the minimal and maximum constraints, respectively.  
 Yet, such dual behaviour of localization measure OL represents the quantum 
mechanical basis for hybridization and bonding.  For instance, one can check that 
while the simple set of { BA χχ , } orbitals provide the interaction measure 
 

212212
BBAAI rrOL χχχχ −− += ,         (68)
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once the linear combination between them is considered, namely {( ) 2/BA χχ +  
and ( ) 2/BA χχ − }, they provide the interaction augmented measure 
 

BABABAIII rrOLOL χχχχχχ 1212 2
2
1 −− ++= .        (69) 

 
 Now, the difference between the terms OLI and OLII can be easily 
visualized since the pure covalent homo-orbitals case is consider giving: 
 

 
212covcov 42 AAIII rOLOL χχ −== .          (70) 

 
 The lesson is clear: the hybridized orbitals have provided the maximum 
localization measure whereas the simple pair of orbitals associates with minimum 
localization measure-maximum delocalization behaviour. This way, the old 
concept of Pauling regarding hybridization is quantum mechanically restored 
through localization recipe. As well the bonding and anti-bonding concepts of 
Coulson find here their full power of interpretation in the light of symmetrical/anti-
symmetrical spatial orbitals that contribute to localization of chemical bonding.      
 The exposed localization aspects were refined over the last 60 years 
through all available quantum mechanical scheme of computation: from 
joining with semiempirical schemes [87-94], unitary transformations of 
operators and bases [95-120] until the most accurate population analyses 
[92,106,114,119,121].  
 In this respect it is worth mentioning that the Mulliken population analysis 
produces an alternative way of looking at chemical bond in terms of charge 
localization by means of the sum of partial populations that participate in the  
i-th bond, core, or lone pair, 
 

∑= i iPP             (71) 
 
with 
 

∑
Γ⊂

=
i

SCCP iii
),( µν

νµµν ,           (72) 

 
when the bonds are recognized (by chemical intuition or by preliminary 
simplified quantum analysis, e.g. Hückel analysis) from the beginning in order 
to define the sets iΓ  of bonding atomic orbitals. 
 Finally, we need to briefly discuss the way the cornerstone chemical 
concept of valence can be equally recovered by means of localization 
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procedure. At this point the developed theory stands as the pseudo-potential 
formalism [124] since its main purpose is to provide the valence-only theory 
for atoms and molecules. In fact, the pseudo-potential techniques aim to 
substitute the Pauli Exclusion Principle with specific operators and potentials. 
The main advantage relays on the reduced number of orthogonal conditions, 
namely those related with valence (say valχ ) and core orbitals (say { }core

iχ ) 
through the pseudo-potential wave function or pseudo-orbital (PO) ϑ : 
 

∑+= i
core
ii

val χαχϑ          (73a) 
 

with 
 

 
ϑχα core

ii = ,          (73b) 
 

which is widely recognized as being of Gram-Schmidt orthogonalization type [98].   
 Formally, it appears that the valence orbital is localized respecting the rest of 
core orbitals, and one can assumes the basic Schrödinger equation exclusively 
for it, so that as all other core orbitals would not exist, i.e. dividing the intrinsic 
eigen-problem into two, possible disjoint, regions associated with valence: 
 

valvalvalH χεχ =
∧

           (74) 
 

and core 
 

core
ii

core
iH χεχ =

∧

           (75) 
 

orbitals. 
 However, this localization is achieved through the pseudo-orbitals of 
above type. This way the valence orbitals are localized once the pseudo-orbital 
is determined and the core orbitals are properly subtracted from it. That is, the 
pseudo-orbital eigen-equation has to be solved, namely: 
 

ϑεϑ val
PPVH =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∧∧

           
(76) 

 

where the so called Phillips-Kleinman (PK) pseudo-potential (PP) [125] 
 

( )
∑

−
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∧

i
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ii
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iPPV
ϑ
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results from combining of equations (73)-(76).  
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 More, generally, since the PK pseudo-potential is rewritten in its linear form: 
 

( )val core core
PP i i ii

V ε ε χ χ
∧

= −∑           
(78) 

 

it follows that any transformation of the PO 
 

∑+= i
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iia χϑϑ

~
,           (79) 

 

with ai’s are arbitrary constants, leads to solutions of PP equation (76) with the 
same eigen-value: 
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 Such a feature of equivalent pseudo-orbitals in establishing the localization of 
the valence orbital and eigen-value consecrates the reality of the valence reality, on 
the one hand, and corresponds to those involving localization measures through 
unitary orthogonal transformations, described before, on the other hand. 
 
3.2. Density localization 
 With the advent of the density functional theory, i.e. with the growing 
recognition of the role that electronic density plays in describing quantum states 
of atoms and molecules, there also appears the possibility of visualizing bonds 
and electronic localization through procedures applied on electronic densities.  
 Basically, the theory of atoms in molecules (AIM) was born with the 
Hellmann-Feynman theorem formulation [104], 
 

ΨΨ=

∧

dQ
Hd

dQ
dE

,           (81) 
 

prescribing the variation of the total energy E respecting an arbitrary parameter 
Q of the system, e.g. the inter-nuclear distance, from its quantum-mechanically 
average. Since Q=R, the resulted force on particular nucleus, dE/dR, yields, in 
fact, the electronic localization measure in that molecular region; it can be 
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easily visualized by further connection between the force and density by means 
of Poisson equation: 
 

∫
∞+

→
→

=−∇=
r

d
r
rrVrF ττρπ )(4)()( .          (82) 

 

This way the chemical bond is classically partitioned into binding and anti-
binding regions.   
 However, other approaches have also been formulated, aiming to more 
accurately exploit the electronic bond by using electronic density directly, so as 
to include the Pauli Exclusion Principle – the vital ingredient when it comes to 
electronic pairs. In this respect, the next quoted contribution comes from the 
Daudel’s lodges [98], resulting in the difference density between the actual 
molecular density molρ  and the so called reference density refρ , a hypothetical 
entity associated with the obtained molecular density when at each nuclear 
position neutral spherical ground states atoms are placed: 
 

)()()( rrr refmol ρρρ −=∆ .          (83) 
 

 Although useful among crystallographers, where it is known as the 
standard deformation density concept [97-99], the Daudel localization measure 
of bonding seems to disagree with Pauli Exclusion Principle due to the 
reference density concept that allows atomic charges to overlap unchanged.      
 A step forward is made with considering the topological issues associated 
with electron density. In this context, the bond finds both an in-depth and 
geometrical interpretations once the so called critical points of bonds are 
employed to describe the wild variety of chemical compounds, especially those 
categorised as electron deficient or posing hypervalences [127-137]. This way, 
Bader developed a theory according which atoms in molecules are seen now as 
open systems forming basins of attractors and repellors, bounded by a surface 

)( ΣΣ r  of local zero flux in the gradient vector field defined by the so called 
zero-flux partitioning condition of electron densities [137]: 
 

)(,0)( Σ

→
Σ∈∀=⋅∇ rrnrρ .          (84) 

 

 A close consequence of this condition is assuming the Laplacian of the 
electron density )(2 rρ∇ as the associate localization measure of bonds, 
obtained by functional integration of the last condition: 
 

0)(
)(

2 =∇∫
ΣΩ

rd ρτδ
           

(85)
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locally, on the domain )(ΣΩ .  
 However, despite the physical background of Bader’s approach, its local zero 
flux has been found with some limitation in defining bonding [138-146]. For 
instance, it was established that a bond path between two nearby helium atoms in 
forming He2 exists quite analogue to that appeared in forming H2, although the He-
He bond has been spectroscopically detected only at very low temperature.    
 Fortunately, another route for defining a localization measure with the help 
of electronic density was explicated in the context of Thom’s theory of 
catastrophe combined with quantum theory. It leads to the so called electronic 
localization functions (ELFs) [147-152]. Nevertheless, it was recently showed 
that a suitable ELF should be shaped as 
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with the limiting constrains  
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ensuring the fulfilment of the Heisenberg and Pauli principles. In this context 
the ELF is defined as the error in localization of electrons within traps. Such 
meaning is true when the inverse of difference in local kinetic terms is 
involved in ELF definition as bellow considered.  
 Analytically, based on typical Thom functions of the universally unfolded 
potential, a particular Markovian-based ELF was formulated as [152]  
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where the components: 
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( ) [ ] 3/53/22 )(3
10
3)( rrh ρπ=

          
(90) 

 

are responsible for the gradient (g) and the homogenous (h) electronic 
distributions, respectively. With this definition, the closer ELF is to zero, the 
better electronic localization will be provided, according with the above limits.  
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4. Reactivity level of quantum chemical bond 
 Starting from the dictum that “A chemical reaction is a change in bonding” 
[153], we arrive at the third level of chemical bonding characterization through 
chemical reactivity concepts. They are, however, classified as reactivity 
indices that span the local and global indicators responsible for chemical 
affinity and bonding, and reactivity principles that consecrate the rules upon 
which the reactions can be rationalized when reactivity indices are employed 
[154-162]. Here we survey upon both these reactivity sides. 
 
4.1. Reactivity indices 
 For an N-electronic system placed into an external potential )(rV  the 
general (first order) equation of the change in the total energy for the electronic 
system, )](,[ rVNEE = , can be written as [53,159,160]: 
 

drrdVrdNdE )()(∫+= ρµ           (91)  
 
where the chemical potential and the electronic density, )(rρ , are defined as: 
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 It is worth noting that by applying on its negative value the finite 
difference approximation around the referential number of electrons N0 of the 
total energy change  
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we obtain the spectroscopic Mulliken formula for electronegativity, in terms of 
ionization potential (IP) and electron affinity (EA).  
 Just as electronegativity, that is a minus chemical potential, accounts for 
the first order effects of the total energy change, the second order effect should 
be explored for recovering the force contribution to the bonding change. For 
achieving that, in the same manner in which equation (91) was drawn, the 
change of chemical potential, )](,[ rVNµµ = , can be encoded as [53,159,160]:   
 

dxrdVrfdNd )()(2 ∫+= ηµ ,                                                 (95)                 
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in which the variation of the chemical potential µ  (or the electronegativity in 
the Parr definition χµ −= ) for an electronic state correlates with the charge 
and potential variation through the introduced chemical hardness (η ): 
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and the Fukui function (f): 
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 In other words, the chemical potential (or the electronegativity) of an 
electronic state depends on the associated chemical hardness and on the spatial 
integrated frontier function.  
 Remarkable, since from the equation (91) one can recognize the Maxwell 
identities: 
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the Fukui index can be rewritten in terms of the density and the number of 
electrons as: 
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thus providing the reactive measure of the chemical bond localization.  
Moreover, it can be arranged as the ratio  
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with the newly introduced reactivity local and global measures: 
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being the so called local and global softness indices, respectively. 
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 Considering of global and local softness contributions, the link between 
them can be immediately checked to be of additive type 
 

∫= drrsS )(           (103) 
 

on the basic constraint of the density functional theory, see also equation (42):  
 

drrN ∫= )(ρ .          (104) 
 

 This softness’ additive feature allows the formulation of a molecular chemical 
hardness Mη  from the atomic chemical hardnesses Aη  ones. The procedure is 
followed by combining the local level associated with atoms-in-molecule (AIM) 
with the global one where the molecule is considered as a whole entity. In these 
conditions the algorithm undergoes three simple steps. Firstly, one can write 
 

∑==
A

AAMAA SfSfS
         

(105) 
 

from where the atomic Fukui functions can be obtained: 
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Then, through employing the chain rule of derivation, 
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one can consider the additive atom-in-molecule level of chemical hardness: 
 

∑=
A

AAM f ηη
.          (108) 

 

Finally, the replacement of atomic Fukui functions (106) is carried out along 
the particularization of the observed hardness-softness relationship:  
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leading to the working formula 
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under the constraint that the sum over the atom types in molecules equals the 
total number of atoms-in-molecule:  
 

AIM

A

A nn =∑ .          (111) 
 

 Quite remarkably, a similar atoms-in-molecule recipe can be formulated 
for atomic and molecular electronegativity once it is assumed that between 
electronegativity and hardness a sort of universal inter-conversion factor θ  
exists at whatever level of electronic organization: 
 

θηχ = .           (112) 
 

 Therefore, for the neutral molecules, it looks like: 
 

 
∑

=

A A

A

AIM

M n
n

χ

χ
.          (113) 

 

 However, aiming to closely connect electronegativity and chemical 
hardness in a single conceptual and computational vision, they can be unitarily 
related with the change in total energy of the molecular system throughout the 
second order truncated expansion: 
 

( )2NNE ∆+∆−≅∆ ηχ          (114) 
 

known as the parabolic charge-dependence of chemical reactivity. While this 
expression seems to naturally follow from the electronegativity and chemical 
hardness definitions (94) and (96), respectively, its universal viability or even 
realistic character in bonding is still disputed. It will be the subject of the 
present study case as well, in a moment. Nevertheless, it is worth noting that 
electronegativity and chemical hardness, viewed as minus chemical potential 
and force, respectively, may be considered as a sufficient minimal set of 
descriptors to be considered for establishing the driving principles of 
chemical reactivity. 
 
4.2. Reactivity principles 
 The key concepts that underlie chemical reactivity are electronegativity 
and chemical hardness [157]. This is because they are the chemical 
correspondent of the potential and force based on which the entirely (point) 
charge transfer can be formulated in similar way the electrostatic laws are 
applied with potential and force fields. 
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 Regarding electronegativity, since it can be seen as the minus of the 
chemical potential, it drives the course of charge transfer until the equilibrium, 
i.e. overall equality, between all involved parts of bonding is attained. The 
resulting principle stands as the electronegativity equalization principle (EE) 
and consecrates that “the electronegativities of all the constituent atoms in a 
molecule have the same value” [159,160]. Remarkably, this electronegativity 
principle combined with the previous parabolic dependence of the total energy 
on the transferred charge lead with the equilibrium electronegativity formula 
that can be generalized with the one derived from the atom-in-molecule 
reactivity indices in previous section.  
 Moving on to the next stage in reactivity, i.e. the second order effects of 
charge transfer, the chemical hardness comes into play in the same manner as 
electronegativity did before. This time, the equalization of chemical harnesses 
is transposed in the so called hard-and-soft-acids-and-base principle (HSAB) 
that simply states that:”hard likes hard and soft likes soft”. Nevertheless, this 
step in reaction accounts more for the covalent refinement of the bonding 
while the difference in electronegativities among the bond constituents 
corresponds with the ionic character and stage of bonding.        
 However, both EE and HSAB principles may lead to departures from the 
demanded equality rules when applied on certain reactions. Such discrepancies 
are not a weakness of the principles themselves, but rather natural effects of 
quantum fluctuations when the chemical bonding is envisaged through 
association and dissociation phenomena.  
 Therefore the electronegativity and chemical hardness equality principles 
have to be accompanied with the corresponding inequality principles thus 
generating the inequality electronegativity (IE) and maximum hardness (MH) 
principles, respectively. Their most general form may be comprised in the 
variational equations [162]: 
 

0≥δχ ,         (115a) 
 

0≥δη .         (115b) 
 

 However, the resulted χ∆  and η∆  has to correlate with the mismatching 
energy ∆Ε between the products and reactants throughout chemical reactions, 
in accordance with the prescription (114). The way in which such correlations 
are or not of the above parabolic nature is still subject to controversies of 
which a general theoretical demonstration is still absent.  
 Nevertheless, we may check the analytical correlations of electronegativity 
and chemical hardness differences respecting the reactions energies for    
certain paradigmatic chemical reactions, an endeavour that is undertaken in           
what follows.   
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5. A case study of quantum chemical bonding and 
reactivity 
 It is largely recognized that the covalent bond is the most widespread type 
of bond in chemical combinations. This is because it attains of the localization 
of electrons in the most direct way by pairing in bonding, see also Figure 1. 
Therefore, even though simple at the first glance the ionic compounds may be 
chosen as the basic test in bonding localization and reactivity principles. From 
the classical electrostatic point of view it is reasonable that as the ionic volume 
is increased together with the decrease of their charge the reciprocal force of 
attraction diminishes and their dissociation is more favourable. Based on this 
empirical consideration it follows that the small series of hydracids (HF, HCl, 
HBr, and HI) may be arranged by means of their increasing in acidic 
dissociation constants at ordinary temperature: 
 
HF<HCl<HBr<HI         (116) 
 
 Let us analyze the quantum chemical characters of this series by means of 
the previously described localization and reactivity concepts.  
 When it comes to localization, the basic density contours of the molecules of 
(116) are considered, see Figure 2, from the DFT-ab initio computation within 
Hyper7 environment leading with the series of equilibrium inter-atomic distances:  
 
RHF = 0.908378 Å < RHCl = 1.69244 Å < RHBr = 1.78848 Å < RHI =1.88766 Å    (117) 
 
 In the bonding region, i.e. in the space between the hydrogen and halogen 
atomic centres in H-X molecules of (116), there are represented both the 
electron densities [163] and the associate ELFs of eqs. (88)-(90) are 
represented for the involved AIM, see Figure 2. 
 From Figure 2 one can clearly see that while the crossing of hydrogen and 
halogen radial densities does not provide the right bonding region, the 
corresponding ELFs cross-lines of AIMs finely indicate the frontier of atomic 
basins in hydracids thus confirming their refined way of identifying chemical 
bonds and bonding. One can equally say that in the crossing vicinity of AIM-
ELFs the electrons are at the same time completely localized (with ELF→0) 
and completely delocalized (with ELF→1), according to the ELF definition in 
section 2.2. This can be viewed as the ELF definition of the chemical bond that 
identifies the molecular region in which the electrons undergo the transition 
from the complete delocalization to complete localization behaviour.  Such a 
feature gives, nevertheless, an in-depth understanding of the quantum nature of 
the chemical bond by associating the mysterious pairing of electrons, despite 
their classical electrostatic inter-repulsion, with an intrinsic order of their spins, 
orbitals  and  thus  densities,  at   those narrow regions of molecular space where  
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Figure 2. Comparative analysis of the charge density contours, electronic localization 
functions (ELFs), and radial densities for the H (dashed lines), F, Cl, Br, and I (full 
lines) atoms in  molecular combinations  HF, HCl, HBr, and HI, respectively. 
 
the Heisenberg and Pauli principles are jointly satisfied through AIM-ELF’s 
extreme values.  Moreover, since the chemical bond can be modelled by AIM-
ELF values jumping between 0 and 1 the way of further interpreting of 
bonding in the frame of quantum information theory is hereafter open.    
 Therefore, it has been proved that localization issues indeed link the 
classical classification of bond as ionic or covalent, or partly ionic or covalent, 
in a continuous quantum reality.   
 As we go into the analysis of the reactivity principles it is worth involving 
the molecules of (116) in the paradigmatic scheme of HSAB [161, 162], 
 

H X HO OH HO X H OH

hard
acid

 soft
base

+ ++

soft
acid

hard
base

+
    soft
acid-base
 complex

    hard
acid-base
 complex

(HSAB)

                  

(118)
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by which a hard acid substitutes a hard base from a soft acid so that the hard-
hard and soft-soft acid-bases complexes are formed.  
 Particularization of the scheme (117) on the molecules of the (116) series 
lead with the associate HSAB reactions: 
 

H2O2
H O+HF FOH + 2 (HSAB1)         (119) 

 
H2O2

H O+HCl ClOH + 2 (HSAB2)       (120) 
 

H2O2
H OHBr BrOH+ 2 (HSAB3)+        (121) 

 
H2O2

H O+HI IOH + 2 (HSAB4)        (122) 
 
 Now, we would like to derive the change in total energy, electronegativity 
and chemical hardness values among the reactants of (HSAB1)-(HSAB4) 
reactions of (119)-(122), and of their inter-correlations, employing different 
theoretical and computational methods.  
 As such, for total energy the semiempirical AM1 (Austin Model 1) and PM3 
(re-parameterized AM1 with less repulsive nonbonding interactions) were 
considered among the ab initio HF and DFT methods. The results are presented in 
Tables 1 and 2. 
 
Table 1. Values of the total energies for the molecules considered through chemical 
reactions (HSAB1)-(HSAB4) of equations (119)-(122) computed with semi-empirical 
(AM1 and MP3) and self-consistent field (HF and DFT) environments. The 
computations were performed using HyperChem Release 7" [164]. All values are 
expressed in MJ/mol, where 1MJ/mole≈10.4eV/atom. 
 

 
                                   * computed with small 3-21G orbital base 
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Table 2. Values of the variation of the total energies for the molecules considered 
through chemical reactions (HSAB1)-(HSAB4) in the computational cases of the Table 1. 
All values are expressed in MJ/mol. 

 

 
 

Table 3. Values of the structural indices electronegativity (χ), chemical hardness (η), in 
finite-difference [165], density functional [155], and semiclassical [156] modes for the 
atoms of the reactants of chemical reactions (HSAB1)-(HSAB4). All values are 
expressed in MJ/mol. 
 

 
 

 Different models were assessed for the electronegativity and chemical 
hardness as well, namely the experimental based finite-difference (FD) [165], 
conceptually based DFT [155], and path-integral based semiclassical (SC) [156] 
ones. The atomic values for atoms involved in reactions (119)-(122) are displayed 
in Table 3, while the molecular results, based on equations (110) and (113), are 
presented in Table 4 for electronegativity and chemical hardness, respectively. 
 It is worth noting that from Table 4 the experimental based finite difference 
and path integral based semi-classical hardness hierarchy is neatly prescribed as:  
 

HIHBrHClHF ηηηη >>>            

(123) 
 

while the OH–X complexes are in general softer than H–OH one, excepting 
FOH. This situation clearly reverses the empirical order of (116) thus proving 
that the quantum mechanical calculation can overcome the empirical 
judgements, a situation often met in connection with quantum phenomena. 
However, the conceptual based DFT analysis suggest that while the order 
(116) is somehow observed, the complex H–OH appears harder than all 
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products OH–X in Table 5, according to reactions (119)-(122). At this point, it 
is clear that another cutting criterion has to be checked in order to decide 
which of these approaches should be chosen as most appropriate for the 
molecular series (116) involved in the (117) HSAB type reaction. 
 Therefore, the electronegativity and chemical hardness excesses ( ηχ ∆∆ , ) for 
reactions (119)-(122) are reported in Table 5 and are finally correlated with total 
energy differences ( E∆ ) of Table 2 by employing the (spectral) quantitative 
structure-property relationships (QSPR) analysis [166], here of the form: 
 

ηχ cbaE ++=           (124) 
 

 The QSPR results through all energy and electronegativity and chemical 
hardness  combined  methods  are  presented  in  Table 6,    emphasising both the  
 
Table 4. Values of the structural indices electronegativity (χ), chemical hardness (η), in 
finite-difference, density functional and semiclassical modes for the reactants of 
chemical reactions (HSAB1)-(HSAB4). All values are expressed in MJ/mol. 
 

 
 
Table 5. Variations of the electronegativity (χ) and chemical hardness (η) by employing 
the finite-difference, density functional, and semiclassical methods for chemical 
reactions (HSAB1)-(HSAB4) of equations (119)-(122). All values are in MJ/mol. 
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Table 6. Coefficients of the correlation of the variation of the total energies of the Table 2 
with the electronegativity and hardness variations of the Table 5 in finite-difference, 
density functional, and semiclassical models of chemical reactions (HSAB1)-(HSAB4), 
respectively. The deviation from the parabolic expansion E=a+bχ+cη in terms of the ratio 
c/b2 as well as the correlation factor of the QSAR model (r) are also indicated.  
 

Method of QSAR results 

χ & η Energy a b c c/b2 r 

AM1 –35.58  –381.92 965.46 0.007 0.989014 
PM3  –0.93   –30.81 26.15 0.028 0.576147 
HF    1.08     30.35 –9.92 –0.011 0.682117 

 
FD 

DFT  81.55 2451.31 –945.31 –0.0002 0.967383 
AM1  50.56 –1495.0 1531.0 0.0007 0.999937 
PM3 –11.325 36.25 2.25 0.0017 0.681353 
HF   10.438 –54.75 25.25 0.0084 0.527625 

 
DFT 

DFT 1020.72 –5070.75 2064.25 0.00008 0.899406 
AM1 –65.095 –67.5 3459.5 0.7593 0.999884 
PM3   –5.135 –87.5 522.5 0.068 0.33817 
HF  –34.807 –565.0 3488.0 0.011 0.97237 

 
SC 

DFT –1306.12 –20600.0 130104 0.00031 0.987422 
 
degree of parabolic dependence of (123), i.e. how closely c/b2 →1, and the 
consecrated statistical correlation coefficient (r). 
 From Table 6 there it is now clear that a parabolic form of total energy 
respecting electronegativity and chemical hardness is possible, it is attained 
within SC-AM1 approach, and when this is the case the associated correlation 
coefficient goes asymptotically to unity.   
 With these, other lessons about bonding and reactivity can be learned. One 
is that the chemical intuition should be never abandoned as far semiempirical 
models can provide reliable results. Another may state that no quantum method 
should be excluded from the outset but tested through all reactivity principles. 
For instance, in this particular problem analyzed the semiclassical approaches 
appear to better respond to the bonding demands, at the edge between the 
classical and quantum effects. Nevertheless, for each envisaged problem the 
whole available arsenal of quantum methods should be explored and 
depending on the results, the problem should be classified as involving more or 
less intensive, localized or reactive effects.  
 
6. Conclusion 
 “When you’re a quantum chemist, it’s like you’re sitting at the top of the 
mountain. The distinction between biochemistry, inorganic, and organic 
chemistry are less important, as all of chemistry revolves around what the 
electrons are doing in molecules, and that domain can be best <<seen>> by 
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applying theory” says Rodney J. Bartlett, on receiving the 2007 American 
Chemical Society award in theoretical chemistry.  
 Indeed, the impact of the quantum view upon the nature of the chemical bond 
was considerable, as it offered both qualitatively and quantitatively a scheme of 
structure analysis together with the chemical-physical transformations, being 
accurately confirmed by both the computational and the experimental expertise 
in all branches of chemistry, and whenever the electronic structure is about. As 
a consequence, the chapters of the structural physical chemistry should be 
classified within an intensive, localization, and reactivity levels of chemical 
bonding assessment [167-189].       
 At the intensive level it was established that, for an adequate treatment in 
the quantum space of the polyatomic combinations, the electronic density 

)(rρ  rather than the already historical wave function ),...( 1 Nrrψ  stays as the 
main variable for a system with N electrons. This is because, contrary to the 
wave function, the electronic density is an experimental detectable quantity, 
defined in the real three dimensional space, and not within a 3N Hilbert 
abstract one, being also directly related to the total number of electrons in the 
concerned system through the functional relation N=∫ρ.            
 However, since the quantum existence of the atoms in molecules 
represents the key to chemical bonding description depending on how much of 
the individuality of an atom is preserved and how much of it is transferred to 
the bond, the localization level appears as a compulsory next stage in chemical 
bond characterization. In this context the idea of molecular partitioning in 
terms of the domains of stability of molecular electronic density was advanced.  
 The results consist in the emergence of the so called atomic basins that 
include all the atomic nuclei but also their interspaces until the surface delimited 
by fulfilment of the zero flux condition of electronic density ( 0)( =⋅∇ nrρ ) 
according with Bader and co-workers’ atoms-in-molecules approaches.  
 Nevertheless, the electronic localization complements, at the local level, the 
quantum information comprised in the reactivity indices, being ultimately 
described through the so called localization functions. These should express the 
balance between the local stability and the delocalization tendency of the involved 
electrons in the chemical bond in the view of the forthcoming transformations.  
 So, the localization functions indicate the ratio of the non-uniformly 
localized electronic distribution to the uniform delocalization of the electronic 
gas, accordingly with the Heisenberg quantum principle of delocalization and 
that of the Pauli indiscernability. It was however proved, through a series of 
hydracids molecules that the atoms-in-molecule electronic localization 
function in its exponential form and with error interpretation, as recently 
recommended by one of the authors’ recipe [152], stands as a viable quantum 
tool for identifying bonds within the bonding space. 
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 On the other way, at the global level, the reactivity indices’ studies are essential 
for indicating the propensity of a multielectronic system to participate into a chemical 
reaction. At the molecular level, these indices are defined so as to quantitatively 
measure the chemical reactivity, while at the biomolecular level they are associated 
with the biological activity, being the best candidates to be correlated in the context 
of quantitative structure activity (property) relationships, QSA(P)Rs.  
 Thus, since the reactivity indices are placed at the informational interface 
between the electronic systems’ stability and their tendency to transform and 
combine they are mathematically introduced as the integral functions of the 
electronic density function, releasing the so called electronic density functionals 
as the efficient tool for the global prediction of the electronic properties of the 
investigated nanosystems.  
 In this respect the electronegativity and chemical hardness seems to provide 
the minimal set of descriptors to be considered for characterizing the bond 
involvements in chemical reactions [37, 155, 156, 160, and 162]. Such an 
analysis was also performed on specific hard-and-soft-acids-and-bases reactions 
characteristic for the hydracids considered.  
 However, all above phenomenologically identified levels of quantum nature 
of the chemical bond can be analytically or computationally inter-related as well 
through particular QSA(P)R models, see Figure 3. This way the inner circle of 
quantum chemistry is opened to include application to biological interaction in a 
unitary manner.    
 

 
 

Figure 3. Synopsis of the intensive, local, and global levels of quantum chemistry and 
their inter-relation respecting the chemical bond characterization. 
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 Overall, searching for the unity of the manifestation forms of the 
chemical bonding at various levels of mater organization has become a very 
active interdisciplinary field in the last years, being one of the main goals in 
the frame of the nanosciences. The quantum paradigm of bonding unification 
through the formulation of a minimal set of concepts and quantities having as 
much universal multielectronic relevance as possible represents a real 
challenge for the conceptualization and prescription of the viable applicative 
directions of the nanosystems, from atoms to biomolecules in the years        
to come.  
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