
Chapter 5

Many-Electron Atoms

5-1 The Independent Electron Approximation

In previous chapters we have dealt with the motion of a single particle in various
potential fields. When we deal with more than one particle, new problems arise and
new techniques are needed. Some of these are discussed in this chapter.

In constructing the hamiltonian operator for a many electron atom, we shall assume
a fixed nucleus and ignore the minor error introduced by using electron mass rather
than reduced mass. There will be a kinetic energy operator for each electron and
potential terms for the various electrostatic attractions and repulsions in the system.
Assuming n electrons and an atomic number of Z, the hamiltonian operator is (in atomic
units)

H(1, 2, 3, . . . , n) = −1
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The numbers in parentheses on the left-hand side of Eq. (5-1) symbolize the spatial
coordinates of each of the n electrons. Thus, 1 stands for x1, y1, z1, or r1, θ1, φ1,
etc. We shall use this notation frequently throughout this book. Since we are not here
concerned with the quantum-mechanical description of the translational motion of the
atom, there is no kinetic energy operator for the nucleus in Eq. (5-1). The index i refers
to the electrons, so we see that Eq. (5-1) provides us with the desired kinetic energy
operator for each electron, a nuclear electronic attraction term for each electron, and an
interelectronic repulsion term for each distinct electron pair. (The summation indices
guarantee that 1/r12 and 1/r21 will not both appear in H . This prevents counting the
same physical interaction twice. The indices also prevent nonphysical self-repulsion
terms, such as 1/r22, from occurring.) Frequently used alternative notations for the
double summation in Eq. (5-1) are 1

2

∑n
i �=j 1/rij , which counts each interaction twice

and divides by two, and
∑n

i<j or
∑′

i,j which is merely a shorthand symbol for the
expression in Eq. (5-1). In each of these alternative notations, the summation is still
over two indices, but the second

∑
symbol is “understood.”

For the helium atom, Eq. (5-1) becomes (see Figure 5-1)

H(1, 2) = −1

2
∇2

1 − 1

2
∇2

2 − (2/r1) − (2/r2) + (1/r12) (5-2)

The helium hamiltonian (5-2) can be rewritten as

H(1, 2) = h(1) + h(2) + 1/r12 (5-3)
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128 Chapter 5 Many-Electron Atoms

Figure 5-1 � Interparticle coordinates for a three-particle system consisting of two electrons and
a nucleus.

where

h(i) = −1

2
∇2

i − 2/ri (5-4)

In Eq. (5-3) we have merely grouped H into two one-electron operators and one two-
electron operator. There is no way to separate this hamiltonian completely into a sum
of one-electron operators without loss of rigor. However, if we wish to approximate the
hamiltonian for helium in such a way that it becomes separable, we might try simply
ignoring the interelectronic repulsion term:

Happrox = h(1) + h(2) (5-5)

If we do this, our approximate hamiltonian Happrox treats the kinetic and potential
energies of each electron completely independently of the motion or position of the
other. For this reason, such a treatment falls within the category of “independent
electron approximations.”

Notice that each individual one-electron hamiltonian (5-4) is just the hamiltonian for
a hydrogenlike ion, so it has as eigenfunctions the 1s, 2s, 2p, etc., functions of Chapter 4
with Z =2. Such one-electron functions are referred to as atomic orbitals.1 Represent-
ing them with the symbol φi (e.g., φ1 = 1s, φ2 = 2s, φ3 = 2px , φ4= 2py , etc.) we have,
then,

h(1)φi(1) = εiφi(1) (5-6)

where εi is referred to as the orbital energy, or one-electron energy for atomic orbital
φi . As we saw in Chapter 4, εi is given in atomic units by

εi = −1

2
Z2/n2 (5-7)

where n is the principal quantum number for φi , and Z is the nuclear charge. The “1” in
Eq. (5-6) indicates that φi(1) is a function whose variable is the position of electron 1.

We will now show that products of the atomic orbitals φ are eigenfunctions of
Happrox. Let the general product of atomic orbitals for helium be written φi(1)φj (2).
Then

Happroxφi(1)φj (2) = (h(1) + h(2))φi(1)φj (2) (5-8)

= h(1)φi(1)φj (2) + h(2)φi(1)φj (2) (5-9)

1The term “atomic orbital” is used for any one-electron function used to describe the electronic distribution
about an atom.
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But h(1) does not contain any of the variables in φj (2), and so they commute. Similarly,
h(2) and φi(1) commute, and

Happroxφi(1)φj (2) = φj (2)h (1)φi(1) + φi(1)h (2)φj (2)

= φj (2)εiφi(1) + φi(1)εj φj (2) [from Eq. (5-6)]

= (
εi + εj

)
φi(1)φj (2) = Eφi(1)φj (2). (5-10)

Thus, φi(1)φj (2) is an eigenfunction of Happrox, and the eigenvalue E is equal to
the sum of the orbital energies. These results are yet another example of the general
rules stated in Section 2-7 for separable hamiltonians. Indeed, once we recognized that
Happrox is separable, we could have written these results down at once.

Since the above terminology and results are so important for understanding many
quantum-chemical calculations, we will summarize them here:

1. The hamiltonian for a multielectron system cannot be separated into one-electron
parts without making some approximation.

2. Ignoring interelectron repulsion operators is one way to allow separability.

3. The one-electron operators in the resulting approximate hamiltonian for an atom are
hydrogenlike ion hamiltonians. Their eigenfunctions are called atomic orbitals.

4. Simple products of atomic orbitals are eigenfunctions for the approximate hamilto-
nian.

5. In this approximation the total energy is equal to the sum of the one-electron energies.

EXAMPLE 5-1 What electronic energy is predicted by the above approximation for
the lithium atom in its ground state? What is the experimental value for the total
electronic energy, given that the first and second ionization energies are 0.198 a.u.
and 2.778 a.u.?

SOLUTION � The ground state configuration for lithium is 1s22s, so Eapprox = 2ε1s + ε2s =
2(− 1

2 · 32

12 a.u.) + (− 1
2 · 32

22 a.u.) = −10.125 a.u. The experimental value of E equals minus the
sum of all three ionization energies. The first two values are given, and the third can be calculated

using the formula for one-electron ions: IE3 = −ELi2+ = −(− 1
2 · 32

12 ) = 4.500 a.u. Therefore,
Eexp =−(0.198+2.778+4.500) a.u.=−7.476 a.u. Clearly, the approximate hamiltonian predicts
an electronic energy that is much lower than the experimental value. �

5-2 Simple Products and Electron Exchange Symmetry

In the independent particle model just described, the wavefunction for the lowest-energy
state for helium is 1s(1)1s(2) since this has the lowest possible sum of one-electron
energies. The electronic configuration for this state is symbolized 1s2, the superscript
telling us how many electrons are in 1s orbitals. What might we expect for the electronic
configuration of the lowest excited state? The answer is 1s2s (superscript “ones” are
implicit). (At this point there is no reason for preferring this configuration to, say,
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1s2px , but we shall show later that, in multielectronic systems, the 2s orbital has a
lower energy than does a 2p orbital, even though they have the same principal quantum
number.) Thus, we might write

ψ(1, 2) = 1s(1)2s(2) ≡ √
8/π exp(−2r1)︸ ︷︷ ︸

He+ 1s

√
1/π(1 − r2) exp(−r2)︸ ︷︷ ︸

He+ 2s

(5-11)

If one were to calculate r̄1, the average distance from the nucleus for electron 1, using this
wavefunction, one would obtain a value of 3

4 a.u., consistent with the 1s state of a helium
ion. For electron 2 one would find an average value, r̄2, of 3 a.u., characteristic of the 2s
state (Problem 5-2). How does this correspond to what we would find experimentally?

Before answering this question, we must recall that there are special problems asso-
ciated with measuring the properties of an atomic system. The process of “seeing”
electrons in atoms well enough to pinpoint their positions perturbs an atom so strongly
that it cannot be assumed to be in the same state after the measurement. To get around
this problem, we can assume that we have a very large number of identically prepared
helium atoms, and that a single measurement of electronic positions will be made on
each atom. It is assumed that the average of the instantaneous r values for a billion
systems is identical to the average r value for a billion instants in a single undisturbed
system.

When we consider the measurement of average values for r1 and r2 in helium, we
immediately encounter another problem. Say we can effect a simultaneous measure-
ment of the two electronic distances in the first He atom. We call these r1 and r2 and
tabulate them for future averaging. Then we move on to a new helium atom and mea-
sure r1 and r2 for it. But we clearly have no way of identifying a particular one of these
electrons with a particular one of the earlier pair. There is no connection between r1
for one atom and r1 for the next since all electrons are identical. If we want to know r̄ ,
we can only average them all together and leave it at that.

Thus, the wavefunction (5-11) does not seem to be entirely satisfactory since it
enables us to calculate r̄1 �= r̄2, something that is in principle impossible to measure.
We need to modify the wavefunction so that it yields an average value for r1 and r2
(or for any quantity) that is independent of our choice of electron labels. This means
that the electron density itself, given by ψ(1, 2)2, must be independent of our electron
labeling scheme.

In a two-electron system like helium, there are only two ways to arrange the labels
“1” and “2” in a single product function. For example, the product 1s2s can be written

1s(1)2s(2) or 2s(1)1s(2) (5-12)

Squaring these gives two different functions, namely,

1s2(1)2s2(2) = (8/π) exp(−4r1)(1/π)(1 − 2r2 + r2
2 ) exp(−2r2)

2s2(1)1s2(2) = (8/π) exp(−4r2)(1/π)(1 − 2r1 + r2
1 ) exp(−2r1)

(5-13)

These are different since they predict, for instance, different distributions for electron 1.
The functions (5-12) are said to differ by an interchange of electron indices, or coor-
dinates. (Since electron labels denote position coordinates, interchange of labels in
the mathematical formula corresponds to interchanging positions of electrons in the
physical model.) For ψ2 to be invariant under such an interchange, it is necessary that
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ψ itself be either symmetric or antisymmetric under the interchange. That is, if P is
an interchange operator such that Pf (1, 2) = f (2, 1) then we need a ψ such that

P ψ = ±ψ (5-14)

since then

P (ψ2) = (P ψ)2 = (±ψ)2 = ψ2

One such wavefunction is given by the sum of eigenfunctions (5-12),

ψs = (1/
√

2)[1s(1)2s(2) + 2s(1)1s(2)] (5-15)

since

P ψs = (1/
√

2)[1s(2)2s(1) + 2s(2)1s(1)] = ψs

(the factor 1/
√

2 keeps the wavefunction normalized). Wavefunction (5-15) is thus
symmetric under electron interchange. Is Eq. (5-15) still an eigenfunction for Happrox?
Yes, because the eigenfunctions (5-12) are degenerate (both have E = ε1s + ε2s) and
can therefore be mixed together in any way we choose and still be eigenfunctions. The
antisymmetric combination is

ψa = (1/
√

2)[1s(1)2s(2) − 2s(1)1s(2)] (5-16)

Thus far we have shown that simple products of atomic orbitals give us two degen-
erate eigenfunctions of Happrox for the configuration 1s2s and that these eigenfunctions
fail to have the required symmetry properties for interchange of electron coordinates.
But we have shown that, by taking the sum and difference of these simple products, we
can form new eigenfunctions of Happrox that are respectively symmetric and antisym-
metric with respect to the interchange of electron coordinates, so that ψ2 is invariant
to electron interchange.

There is another way we can demonstrate that the helium atom eigenfunctions ought
to be symmetric or antisymmetric for electron exchange: We can examine the hamilto-
nian operator. We have shown in Chapter 2 that nondegenerate eigenfunctions must be
symmetric or antisymmetric for any operation that leaves the hamiltonian unchanged
and that degenerate eigenfunctions may always be mixed together in some combina-
tion so that they too are symmetric or antisymmetric. This suggests that, for the case
under discussion (the helium atom), the hamiltonian operator might be unchanged by
an exchange of electrons. First we examine Happrox:

P Happrox = P [h(1) + h(2)] = h(2) + h(1) = Happrox (5-17)

Our approximate hamiltonian is invariant to electron exchange, so any nondegenerate
eigenfunctions must be symmetric or antisymmetric for interchange of electron labels
(or positions). Only because the 1s2s configuration leads to degenerate eigenfunctions
were we able to find unsymmetric2 eigenfunctions like Eq. (5-12). This situation is
reminiscent of the particle-in-a-ring system discussed in Chapter 2, where degenerate,

2A function is unsymmetric for any operation that produces neither plus nor minus that function; i.e., if Pf = y

and y �= ±f, then f is unsymmetric under the operation P .
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symmetric exponential eigenfunctions could be mixed to form degenerate unsymmetric
trigonometric eigenfunctions. Let us now examine the full hamiltonian H :

P H(1, 2) = P [h(1) + h(2) + 1/r12] = h(2) + h(1) + 1/r21 = H(1, 2) (5-18)

Since r12 and r21 are the same distance, it is evident that the exact H is likewise invariant
to interchange of electron labels. Thus, we see that appeal either to physical argument
or to the invariance of H and of Happrox to exchange of electrons leads us to recognize
the need to impose symmetry conditions on the wavefunctions.

We now summarize the points we have tried to convey in this section.

1. A simple product function of the type 1s(1)2s(2) enables one to calculate different
values of r̄ for electrons 1 and 2. This makes no physical sense since the electrons
are identical particles and hence are not physically distinguishable.

2. Wavefunctions that overcome this difficulty must be either symmetric or antisym-
metric with respect to exchange of electron labels (coordinates).

3. The fact that this kind of “exchange symmetry” must be present is also (or alter-
natively) seen from the fact that H (and also Happrox) is invariant under such an
exchange operation.

EXAMPLE 5-2 Given the functions f (x1)=x2
1 and g(x2)= exp(x2), show that, for

x1 = 1, x2 = 2, f (x1)g(x2) is unsymmetric for exchange of the two x positions,
f (x1)g(x2)+g(x1)f (x2) is symmetric, and f (x1)g(x2) − g(x1)f (x2) is antisym-
metric.

SOLUTION � For fg, we are examining what happens when x2
1 exp(x2) turns into x2

2 exp(x1).

That is, we are comparing 12 exp(2) to 22 exp(1). The resulting values are 7.389 and 10.873—
obviously neither plus or minus times each other. fg + gf equals 12 exp(2) + 22 exp(1), or
7.389 + 10.873. After switching positions, we get 10.873 + 7.389, which is obviously the same
thing. fg −gf gives 7.389 − 10.873. After switching, it gives 10.873 − 7.389, which is obviously
minus one times the first value. �

5-3 Electron Spin and the Exclusion Principle

Chemical and spectral evidence indicates that metals in Groups IA and IB of the periodic
table are reasonably well represented by an electron configuration wherein one loosely
held “valence” electron occupies an s orbital and all other electrons occur in pairs in
orbitals of lower principal quantum number. Thus, lithium has a ground-state electronic
structure approximated by the configuration 1s22s, sodium by 1s22s22p63s, copper by
1s22s22p63s23p63d104s, etc. (A configuration indicating that all orbitals of given n

and l are doubly occupied, leaving no other electrons, is often called a closed shell. Thus,
the above-cited examples each consist of a closed shell plus one s valence electron.)
The observation that each atomic orbital in such configurations is occupied by no more
than two electrons was without a theoretical explanation for some time.
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When an atom like sodium is placed in an external magnetic field, what should
be the magnetic moment of the atom due to orbital motion of the electrons? The
s electrons should contribute nothing since, by definition of s, l = 0 and hence the
magnetic quantum number m = 0 for such electrons. An electron in a p orbital may
have an orbital magnetic moment, but if all p levels (l = 1,m =+1, 0,−1) are equally
occupied, the net magnetic moment should be zero. It is clear, then, that we might
expect atoms in Groups IA and IB to possess no magnetic moment due to electron
orbital motion. Nevertheless, Gerlach and Stern [1, 2] found that, when a beam of
unexcited silver atoms is passed through an inhomogeneous magnetic field, it splits
into two components as though each silver atom possesses a small magnetic moment
capable of taking on either of two orientations in the applied field. (In a homogeneous
magnetic field, the north and south poles of a magnetic dipole experience equal but
oppositely directed forces, causing the dipole to become oriented. An example is a
magnetic compass in the magnetic field of the earth. In an inhomogeneous magnetic
field the poles experience opposite but unequal forces, causing the entire dipole to be
accelerated through space in addition to being oriented.) Uhlenbeck and Goudsmit
[3] and Bichowsky and Urey [4] independently suggested that the electron behaves
as though it were a particle of finite radius spinning about its center of mass. Such a
spinning particle would classically have angular momentum and, since it is charged,
an accompanying magnetic moment.3

If we accept the model of electron spin, then we can rationalize our experimental
facts if we assume each electron is capable of being in one of but two possible states of
opposite spin. This is done in the following way. If we attribute opposite spins to the
two 1s electrons in, say, silver, their spin moments should cancel. Similarly, all other
orbital-sharing electrons would contribute nothing if their spins were opposed. Only
the outermost (5s) electron would have an uncanceled spin moment. Its two possible
orientations would cause the beam to split into two components as is observed.4

The evident need for the introduction of the concept of electron spin means that our
wavefunctions of earlier sections are incomplete. We need a wavefunction that tells us
not only the probability that an electron will be found at given r , θ , φ coordinates in
three-dimensional space, but also the probability that it will be in one or the other spin
state. Rather than seeking detailed mathematical descriptions of spin state functions,
we will simply symbolize them α and β. Then the symbol φ(1)α(1) will mean that
electron number 1 is in a spatial distribution corresponding to space orbital φ, and that
it has spin α. In the independent electron scheme, then, we could write the spin orbital
(includes space and spin parts) for the valence electron of silver either as 5s(1)α(1) or
5s(1)β(1). These two possibilities both occur in the atomic beam and interact differently
with the inhomogeneous magnetic field.

We now focus on the manner in which spin considerations affect wavefunction
symmetry. The electrons are still identical particles, so our particle distribution must be

3This classical model, developed in the 1920s, is pedagogically useful and is responsible for the term spin, which
is still employed to describe the fourth quantum number. However, it was not until 1948 and 1967 that mathematical
studies of the properties of linearized equivalents of the Schödinger equation revealed the mathematical connection
to this quantum number. For an entry to the literature, see Roman [10].

4Actually, other experimental evidence, such as splitting of atomic spectral lines due to applied magnetic fields,
was also available. Furthermore, experience with the quantum theory of orbital angular momentum played a role
in the treatment of electron spin. The reader should not think that the historical development of quantum theory
of spin was as naive or simple as we make it appear here.
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insensitive to our choice of labels. This last statement is equivalent to saying that ψ must
be symmetric or antisymmetric for interchange of electron space and spin coordinates.
Let us examine this situation in the case of ground state helium and lithium atoms.

In the independent electron approximation, the lowest-energy configuration for
helium is 1s2. Let us write the various conceivable spin combinations for this config-
uration. They are

1s(1)α(1)1s(2)α(2)










α(1)α(2) (5-19)
1s(1)α(1)1s(2)β(2) = 1s(1)1s(2)

α(1)β(2) (5-20)
1s(1)β(1)1s(2)α(2) β(1)α(2) (5-21)
1s(1)β(1)1s(2)β(2) β(1)β(2) (5-22)

It is easy to see that the common space term 1s(1)1s(2) is symmetric for electron inter-
change. Likewise, α(1)α(2) and β(1)β(2) are each symmetric, so Eqs. (5-19) and
(5-22) are totally symmetric wavefunctions. The spin parts of Eqs. (5-20) and (5-21) are
unsymmetric (not antisymmetric) for interchange, so these wavefunctions are not satis-
factory. However, we can take the sum and difference of Eqs. (5-20) and (5-21) to obtain

1s(1)1s(2)

{
(1/

√
2)[α(1)β(2) + β(1)α(2)] (5-23)

(1/
√

2)[α(1)β(2) − β(1)α(2)] (5-24)

The 2−1/2 serves to maintain normality if we assume α and β to be orthonormal:

∫
α*(1)α(1)dω(1) =

∫
β*(1)β(1) dω(1) = 1 (5-25)

∫
α*(1)β(1)dω(1) =

∫
β*(1)α(1) dω(1) = 0 (5-26)

Here we use integrals and a differential element dω in a “spin coordinate ω.” This is
notationally convenient but not, for our purposes, worth delving into. We can interpret
integration over ω to be in effect equivalent to summing over the possible electron
indices. If, for a particular electron index, the spins agree, then the integral equals unity.
If they disagree, the integral vanishes. Wavefunction (5-23) consists of symmetric space
and spin parts, so it is overall symmetric. Wavefunction (5-24) contains a symmetric
space part times an antisymmetric spin part, so it is overall antisymmetric. We have
succeeded, then, in writing down four wavefunctions for the configuration 1s2 having
proper symmetry for electron interchange. Three of these, Eqs. (5-19), (5-22), (5-23),
are symmetric and one, Eq. (5-24), is antisymmetric. Experimentally, we know that
the ground state of helium is a singlet, that is, there is but one such state. This suggests
that the wavefunction must be antisymmetric for exchange of electron space and spin
coordinates.

EXAMPLE 5-3 We have just shown four wavefunctions resulting from four spin
functions times a symmetric space part (1s2). Can we manipulate the 1s2 configu-
ration to obtain an antisymmetric space part, as we did for the 1s2s configuration?
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SOLUTION � We can try to produce an antisymmetric space function by taking the product
difference 1s(1)1s(2)-1s(2)1s(1). Since these two products are really the same, this combination
equals zero. Thus, whereas two different orbitals can be arranged in two product combinations, one
symmetric and the other antisymmetric, we find that a single orbital, doubly occupied, can appear
only in one simple product, which must be symmetric for electron exchange. �

Now let us try lithium. The lowest-energy configuration should be 1s3, and we can
write eight unique space-spin orbital products:

1s(1)1s(2)1s(3)






α(1)α(2)α(3) (5-27)
α(1)α(2)β(3) (5-28)
α(1)β(2)α(3) (5-29)
β(1)α(2)α(3) (5-30)
α(1)β(2)β(3) (5-31)
β(1)α(2)β(3) (5-32)
β(1)β(2)α(3) (5-33)
β(1)β(2)β(3) (5-34)

Of these, the first and last are totally symmetric for all electron interchanges. The
remaining six are unsymmetric for two out of three possible interchanges. Can we
make appropriate linear combinations of these as we did for helium? Let us try. The
problem is simplified by recognizing that, if we start with, say, two α’s and one β,
we still have that number of α’s and β’s after interchange of electron labels. Hence,
we mix together only functions that agree in total numbers of α’s and β’s, i.e., (5-28),
(5-29), (5-30) with each other, or (5-31), (5-32), (5-33) with each other. Let us try the
sum of (5-28), (5-29), and (5-30). Ignoring normalization, this gives the spin function

α(1)α(2)β(3) + α(1)β(2)α(3) + β(1)α(2)α(3) (5-35)

Interchanging electron spin coordinates 1 and 2 gives

α(2)α(1)β(3) + α(2)β(1)α(3) + β(2)α(1)α(3)

which, upon reordering each product, is easily seen to be identical to (5-35). The same
result arises from interchanging 1 and 3 or 2 and 3, and so (5-35) is symmetric for all
interchanges. The sum of (5-31), (5-32), and (5-33) is likewise symmetric. Can we find
any combinations that are totally antisymmetric? A few attempts with pencil and paper
should convince one that it is impossible to find a combination that is antisymmetric
for all interchanges. Experimentally, we know that no state of lithium corresponds to
a 1s3 configuration.

To summarize, we have found that for the configuration 1s2 we can write three wave-
functions that are symmetric and one that is antisymmetric under exchange of electron
space and spin coordinates, while for the configuration 1s3 we can construct symmetric
or unsymmetric wavefunctions, but no antisymmetric ones. The physical observation
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is that atoms exist in only one state having an electronic structure approximately repre-
sented by the configuration 1s2, but that there are no atoms having any state represented
by 1s3. This and other physical evidence has led to the recognition of the exclusion prin-
ciple: Wavefunctions must be antisymmetric with respect to simultaneous interchange
of space and spin coordinates of electrons.5 In invoking the exclusion principle, we
exclude all of the 1s3 wavefunctions and three out of the four wavefunctions we were
able to construct for the ground state of helium, leaving (5-24) as the only acceptable
wave-function.

We have seen that the ground state configuration of lithium cannot be 1s3. Can we
satisfy the exclusion principle with the next-lowest energy configuration 1s22s? We
will try to find a satisfactory solution, but our manipulations will be simplified if we
streamline our notation. We will write a function such as 1s(1)1s(2)2s(3)α(1)β(2)α(3)

as 1s1s2sαβα, allowing position in the sequence to stand for the electron label. Inter-
changing electrons 1 and 2 is then represented by switching the order of space functions
in positions 1 and 2 and spin functions in positions 1 and 2 thus

1s1s2sαβα
1�2−→ 1s1s2sβαα (5-36)

This interchange produced a new function rather than merely reversing the sign
of our starting function. But if we take the difference between the two products
in Eq. (5-36), we will have a function that is antisymmetric to 1, 2 interchange:
1s1s2s(αβα − βαα). Now we subject this to a 1, 3 interchange and the new products
produced are subtracted to give a function that is antisymmetric to 1, 3 interchange:
1s1s2s(αβα − βαα)−2s1s1s(αβα − ααβ). The first pair of terms is still not antisym-
metric to 2, 3 interchange, and the second pair is not antisymmetric to 1, 2 interchange.
We can use either one of these interchanges to produce two new terms to subtract.
Either way, the resulting wavefunction, antisymmetric for all interchanges, is

1√
6
[1s1s2s(αβα − βαα) + 1s2s1s(βαα − ααβ) + 2s1s1s(ααβ − αβα)] (5-37)

The factor 6−1/2 normalizes (5-37) since all of the six space-spin products are normal-
ized and orthogonal to each other product by virtue of either space-orbital or spin-orbital
disagreement, or both. Note that, whereas the two-electron wavefunction for helium
was separable into a single space function times a spin function, the lithium wavefunc-
tion must be written as a linear combination of such products. This is usually true when
we deal with more than two electrons.

Since 1s22s is the lowest-energy configuration for which we can write an anti-
symmetrized wavefunction, this is the ground state configuration for lithium in this
independent-electron approximation.

In summary, phenomenological evidence suggests that an electron can exist in either
of two “spin states” in the presence of a magnetic field. Writing wavefunctions including
spin functions and comparing these with experimental facts indicates that states exist
only for wavefunctions that satisfy the exclusion principle.

5A broader statement is: Wavefunctions must be antisymmetric (symmetric) with respect to simultaneous
interchange of space and spin coordinates of fermions (bosons). A fermion is characterized by half-integral
spin quantum number; a boson is characterized by integral spin quantum number. Electrons have spin quantum
number 1

2 and are therefore fermions.
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5-4 Slater Determinants and the Pauli Principle

It was pointed out by Slater [5] that there is a simple way to write wavefunctions
guaranteeing that they will be antisymmetric for interchange of electronic space and spin
coordinates: one writes the wavefunction as a determinant. For the 1s22s configuration
of lithium, one would write

ψ = 1√
6

∣∣∣∣∣∣∣

1s(1)α(1) 1s(2)α(2) 1s(3)α(3)

1s(1)β(1) 1s(2)β(2) 1s(3)β(3)

2s(1)α(1) 2s(2)α(2) 2s(3)α(3)

∣∣∣∣∣∣∣
(5-38)

Expanding this according to the usual rules governing determinants (seeAppendix 2)
gives

ψ = 1√
6
[1s(1)α(1)1s(2)β(2)2s(3)α(3) + 2s(1)α(1)1s(2)α(2)1s(3)β(3)

+1s(1)β(1)2s(2)α(2)1s(3)α(3) − 2s(1)α(1)1s(2)β(2)1s(3)α(3)

−1s(1)β(1)1s(2)α(2)2s(3)α(3) − 1s(1)α(1)2s(2)α(2)1s(3)β(3)] (5-39)

This can be factored and shown to be identical to wavefunction (5-37) of the preceding
section.

A simplifying notation in common usage is to delete the α, β symbols of the spin-
orbitals and to let a bar over the space orbital signify β spin, absence of a bar being
understood to signify α spin. In this notation, Eq. (5-38) would be written

ψ = 1√
6

∣∣∣∣∣∣∣

1s(1) 1s(2) 1s(3)
1s̄(1) 1s̄(2) 1s̄(3)
2s(1) 2s(2) 2s(3)

∣∣∣∣∣∣∣
(5-40)

The general prescription to follow in writing a Slater determinantal wavefunction is
very simple:

1. Choose the configuration to be represented. 1s1s̄2s was used above. (Here we write
1s1s̄2s rather than 1s22s to emphasize that the two 1s electrons occupy different spin-
orbitals.) For our general example, we will let Ui stand for a general spin-orbital
and take a four-electron example of configuration U1U2U3U4.

2. For n electrons, set up an n × n determinant with (n!)−1/2 as normalizing factor.
Every position in the first row should be occupied by the first spin-orbital of the
configuration; every position in the second row by the second spin-orbital, etc. Now
put in electron indices so that all positions in column 1 are occupied by electron 1,
column 2 by electron 2, etc.

In the case of our four-electron configuration, the recipe gives

ψ = 1√
4!

∣∣∣∣∣∣∣∣∣

U1(1) U1(2) U1(3) U1(4)

U2(1) U2(2) U2(3) U2(4)

U3(1) U3(2) U3(3) U3(4)

U4(1) U4(2) U4(3) U4(4)

∣∣∣∣∣∣∣∣∣

(5-41)
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Notice that the principal diagonal (top left to bottom right) contains our original con-
figuration U1U2U3U4. Often, the Slater determinant is represented in a space-saving
way by simply writing the principal diagonal between short vertical bars. The nor-
malizing factor is deleted. Thus, Eq. (5-41) would be symbolized as |U1(1)U2(2)

U3(3)U4(4)|.
We have indicated the general recipe for writing down a Slater determinant, and we

have seen that, for the configuration 1s1s̄2s, this gives an antisymmetric wavefunc-
tion. Now we will give a general proof of the antisymmetry of such wavefunctions
for exchange of electrons. We have already seen that interchanging the space and spin
coordinates of electrons 1 and 2 corresponds to going through the wavefunction and
changing all the 1s to 2s and vice versa; i.e., electron labels denote coordinates. In
a Slater determinant, interchanging electron labels 1 and 2 is the same thing as inter-
changing columns 1 and 2 of the determinant. [See Eq. (5-41) and note that columns 1
and 2 differ only in electron index.] But a determinant reverses sign upon interchange
of two rows or columns. (See Appendix 2 for a summary of the properties of determi-
nants.) Hence, any Slater determinant reverses sign (i.e., is antisymmetric) upon the
interchange of space and spin coordinates of any two electrons.

Suppose we tried to put two electrons into the same space-orbital with the same spin.
This would require that the same spin-orbital be written twice in the configuration,
causing two rows of the Slater determinant to be identical. [If both 1s electrons in
Eq. (5-40) had α spin, the bars would be absent from row 2.] We just stated that
the determinant must reverse sign upon interchange of two rows. If we interchange
two identical rows, we change nothing yet the sign must reverse: the determinant
must be equal to zero. Thus, the determinantal wavefunction vanishes when we try
to put more than one electron into the same spin-orbital, indicating that this is not a
physically allowed situation. This is a generalization of our earlier discovery that no
1s3 configuration is allowed by the exclusion principle, such a configuration requiring
at least two electrons to have the same space and spin functions.

This restriction on allowable electronic configurations is more familiar to chemists as
the Pauli principle: In assigning electrons to atomic orbitals in the independent electron
scheme, no two electrons are allowed to have all four quantum numbers (n, l,m, spin)
the same. The Pauli principle is a restatement of the exclusion principle as it applies in
the special case of an orbital approximation to the wavefunction.

5-5 Singlet and Triplet States for the 1s2s Configuration
of Helium

We showed in Section 5-2 that two space functions having proper space symmetry
could be written for the configuration 1s2s. One was symmetric (Eq. 5-15) and one
was antisymmetric (Eq. 5-16). Now we find that spin functions must be included in
our wavefunctions, and in a way that makes the final result antisymmetric when space
and spin coordinates are interchanged. We can accomplish this by multiplying the
symmetric space function by an antisymmetric spin function, calling the result ψs,a.
Thus,

ψs,a(1, 2) = (1/
√

2)
[
1s(1)2s(2) + 2s(1)1s(2)

]
(1/

√
2)

[
α(1)β(2) − β(1)α(2)

]
(5-42)
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Alternatively, we can multiply the antisymmetric space term by any one of the three
possible symmetric spin terms:

ψa,s(1, 2) = (1/
√

2)
[
1s(1)2s(2) − 2s(1)1s(2)

]





α(1)α(2) (5-43a)
(1/

√
2)

[
α(1)β(2) + β(1)α(2)

]
(5-43b)

β(1)β(2) (5-43c)

All four of these wavefunctions satisfy the exclusion principle and each is linearly
independent of the others, indicating that four distinct physical states arise from the
configuration 1s2s.

There are a number of important points that can be illustrated using these wave-
functions. The first has to do with Slater determinants. Let us write down a Slater
determinantal expression corresponding to wavefunction (5-43a). The configuration is
1s(1)α(1)2s(2)α(2), giving the Slater determinant (where absence of a bar indicates
α spin)

ψa,s(1, 2) = 1√
2

∣∣∣∣∣
1s(1) 1s(2)
2s(1) 2s(2)

∣∣∣∣∣ (5-44)

which, upon expansion, gives us Eq. (5-43a). If we attempt the same process to
obtain Eq. (5-43b), we encounter a difficulty. The configuration 1s(1)α(1)2s(2)β(2)

leads to a 2 × 2 determinant, which, upon expansion, gives two product terms,
whereas Eq. (5-43b) involves four product terms. The Slater determinantal functions
corresponding to Eqs. (5-42) and (5-43b) are, in fact,

ψs,a
a,s

(1, 2) = 1√
2

{
1√
2

∣∣∣∣∣
1s(1) 1s(2)

2s̄(1) 2s̄(2)

∣∣∣∣∣ ∓
1√
2

∣∣∣∣∣
1s̄(1) 1s̄(2)

2s(1) 2s(2)

∣∣∣∣∣

}
(5-45)

The lesson to be gained from this is that a single Slater determinant does not always
display all of the symmetry possessed by the correct wavefunction. (In this particular
case, a single determinant restricts one of the AOs to α spin and the other to β, which
is an artificial limitation.)

Next we will investigate the energies of the states as they are described by these
wavefunctions. We have already pointed out that they are degenerate eigenfunctions
of Happrox, but we will now examine their interactions with the full hamiltonian (5-2).
Since our wavefunctions are not eigenfunctions of this hamiltonian, we cannot compare
eigenvalues. Instead we must calculate the average values of the energy for each
wavefunction, using the formula

Ē =
∫

ψ*Hψ dτ∫
ψ*ψ dτ

(5-46)

The symbol “dτ” stands for integration over space and spin coordinates of the electrons:
dτ = dv dω. Since both space and spin parts of our wavefunctions are normalized
[cf. Eqs. (5-25) and (5-26)], the denominator of Eq. (5-46) is unity and may be ignored.
The energy thus is given by the expression

Ē =
∫

ψ*

[
−1

2
∇2

1 − 1

2
∇2

2 − (2/r1) − (2/r2) + (1/r12)

]
ψ dτ (5-47)
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Notice that the energy operator H contains no terms that would interact with spin
functions α and β. (Such terms do arise at higher levels of refinement, but we ignore
them for now.) Hence, the spin terms of ψ can be integrated separately, and, since all
spin factors in Eqs. (5-42) and (5-43) are normalized, this gives a factor of unity in all
four cases. This means that the average energies will be entirely determined by the
space parts of the wavefunctions. This, in turn, means that all three states (5-43), which
have the same space term, will have the same energy but that the state approximated by
the function (5-42) may have a different energy. If our approximate representation of
the exact eigenfunctions is physically realistic, we expect helium to display two excited
state energies in the energy range consistent with a 1s2s configuration. Furthermore,
we expect one of these state energies to be triply degenerate.

Which of these two state energies should be higher? To determine this requires that
we expand our energy expression (5-47) for each of the two space functions (5-42)
and (5-43).

Ē1
3
= 1

2

∫∫
[1s*(1)2s*(2) ± 2s*(1)1s*(2)]

[
−1

2
∇2

1 − 1

2
∇2

2 − (2/r1)

− (2/r2) + (1/r12)

]
[1s(1)2s(2) ± 2s(1)1s(2)]dv(1)dv(2) (5-48)

(The subscript on Ē refers to the degeneracy of whichever energy level we are consider-
ing.) This expands into a large number of terms. Integrals over one-electron operators
may be written as products of two integrals, each over a different electron.6 Thus, the
expansion over the kinetic energy operators gives

(5-49)
6We have already shown that, if the 1/r12 term is absent, the energy is equal to E1s + E2s, for He+, which is

equal to −2.5 a.u. Therefore, the detailed breakdown leading to Eqs. (5-49)–(5-51) is not necessary. However, we
will present it in detail in the belief that some students will benefit from another specific example of integration
of two-electron products over one-electron operators.



Section 5-5 Singlet and Triplet States for the 1s2s Configuration of Helium 141

The orthogonality of the 1s and 2s orbitals causes the terms preceded by ± to vanish.
Furthermore, integrals that differ only in the variable label [such as those in the second
and third terms of (5-49)] are equal, so that this expansion becomes

∫
1s*(1)

[
−1

2
∇2

1

]
1s(1)dv(1) +

∫
2s*(1)

[
−1

2
∇2

1

]
2s(1) dv(1) (5-50)

Expansion of Eq. (5-48) over (−2/r1 − 2/r2) proceeds analogously to give
∫

1s*(1)(−2/r1)1s(1) dv(1) +
∫

2s*(1) (−2/r1) 2s(1) dv(1) (5-51)

The final term in the hamiltonian, 1/r12, occurs in four two-electron integrals:

1

2

{∫∫
1s*(1)2s*(2)(1/r12)1s(1)2s(2) dv(1) dv(2)

+
∫∫

2s*(1)1s*(2)(1/r12)2s(1)1s(2) dv(1) dv(2)

±
∫∫

1s*(1)2s*(2)(1/r12)2s(1)1s(2) dv(1) dv(2)

±
∫∫

2s*(1)1s*(2)(1/r12)1s(1)2s(2) dv(1) dv(2)

}
(5-52)

The first two integrals of (5-52) differ only by an interchange of labels “1” and “2 ,” and
so they are equal to each other. The same is true of the second pair. Thus, the average
value of the energy is

Ē1
3

=
{∫

1s*(1)

[
−1

2
∇2

1

]
1s(1) dv(1) +

∫
1s*(1) [−2/r1] 1s(1) dv(1)

+
∫

2s*(1)

[
−1

2
∇2

1

]
2s(1) dv(1) +

∫
2s*(1) [−2/r1] 2s(1) dv(1)

+
∫∫

1s*(1)2s*(2)(1/r12)1s(1)2s(2) dv(1) dv(2)

±
∫∫

1s*(1)2s*(2)(1/r12)2s(1)1s(2) dv(1) dv(2)

}
(5-53)

Notice that, since − 1
2∇2 − 2/r is the hamiltonian for He+, the first two integrals of

Eq. (5-33) combine to give the average energy of He+ in its 1s state. The second pair
gives the energy for He+ in the 2s state. Thus, Eq. (5-53) can be written

Ē1
3
= E1s + E2s + J ± K (5-54)

where J and K represent the last two integrals in Eq. (5-53). No bars appear on E1s
or E2s because these “average energies” are identical to the eigenvalues for the He+
hamiltonian (Problem 5-15).

The integral J denotes electrons 1 and 2 as being in “charge clouds” described by
1s*1s and 2s*2s, respectively. The operator 1/r12 gives the electrostatic repulsion
energy between these two charge clouds. Since these charge clouds are everywhere neg-
atively charged, all the interactions are repulsive, and it is necessary that this “coulomb
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Figure 5-2 � The function produced by multiplying together hydrogenlike 1s and 2s orbitals. R

is the radius of the spherical nodal surface.

integral” J be positive. Alternatively, we can argue that the functions 1s*1s, 2s*2s,
and 1/r12 are everywhere positive, so the integrand of J is everywhere positive and J

must be positive.
The integral K is called an “exchange integral” because the two product functions in

the integrand differ by an exchange of electrons. This integral gives the net interaction
between an electron “distribution” described by 1s*2s, and another electron in the same
distribution. (These distributions are mathematical functions, not physically realizable
electron distributions.) The 1s2s function is sketched in Fig. 5-2. Because the 2s orbital
has a radial node, the 1s2s function (which is the same as 1s*2s since the 1s function
is real) also has a radial node. Now the function 1s(1)2s(1)1s(2)2s(2) will be positive
whenever r1 and r2 are either both smaller or both larger than the radial node distance
(R in Figure 5-2). But when one r value is smaller than R and the other is greater,
corresponding to the electrons being on opposite sides of the nodal surface, the product
1s(1)2s(1)1s(2)2s(2) is negative. These positive and negative contributions to K are
weighted by the function 1/r12, which is always positive and hence unable to affect
the sign of the integrand. But 1/r12 is smallest when the electrons are far apart. This
means that 1/r12 tends to reduce the contributions where the electrons are on opposite
sides of the node (i.e., the negative contributions), and so the value of K turns out to be
positive (although not as large in magnitude as J , which has no negative contribution
at all).

Since the integral K is positive, we can see from Eq. (5-54) that the triply degenerate
energy level lies below the singly degenerate one, the separation between them being
2K . (We note in passing that these independent-electron wavefunction energies are not
simply the sum of one-electron energies as was the case when we used Happrox, thereby
ignoring interelectronic repulsion.)

The experimental observation agrees qualitatively with these results. There are two
state energies associated with the 1s2s configuration. When the atom is placed in an
external magnetic field, the lower-state-energy-level splits into three levels. The state
having the higher energy has a “multiplicity” of one and is called a singlet. The lower-
energy with multiplicity three is called a triplet. (The reference to a “triplet state”
should not be construed to mean that this is one state. It is a triplet of states.)

It is possible to use vector arguments similar to those presented in Chapter 4 to under-
stand why the triply degenerate level splits into three different levels in the presence of
a homogeneous magnetic field. Let us first consider the case of a single electron. We
have already indicated that two spin states are possible, which we have labeled α and β.
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In a magnetic field the angular momentum vectors precess about the field axis z, as
depicted in Figure 5-3. The z components of the angular momentum vectors are con-
stant but the x and y components are not. Because the allowed z components must
in general differ by one atomic unit (stated but not proved in Chapter 4), and because
there are but two allowed values (inferred from observations such as the splitting of
a beam of silver atoms into two components), and because the two kinds of state are
oppositely affected by magnetic fields, it is concluded that the z components of angular
momentum (labeled ms) are equal to + 1

2 and − 1
2 a.u. for α and β, respectively. Fol-

lowing through using orbital angular momentum relations as a model, we postulate an
electron spin quantum number s equal to the maximum z-component of spin angular
momentum in a.u., 1

2 , and a spin angular momentum vector s having length
√

s(s + 1)

a.u. The degeneracy, gs = 2s + 1, equals 2, in agreement with the two orientations in
Fig. 5-3.

As noted in Chapter 4, half-integer quantum numbers correspond to eigenfunctions
that cannot be expressed as spherical harmonics. We will not pursue the question
of detailed expressions for α and β here. (However, see the problems at the end of
Chapter 9.)

Now let us turn to the two-electron system. We will assume that the magnetic
moments of the two electrons interact independently with the external field. This
ignores the fact that each electron senses a small contribution to the magnetic field
resulting from the magnetic moment of the other electron.

Another factor that could affect the magnetic field sensed by the spin moment is the
magnetic moment resulting from the orbital motions of the electrons, although this is
not present if both electrons are taken to be in s atomic orbitals (AOs). For two electrons,
we can imagine four situations: αα, αβ, βα, and ββ. We pointed out earlier (Section
4-5) that, for a system composed of several moving parts, the total angular momentum
is the sum of the individual angular momenta, and the z component is the sum of the
individual z components. For the four spin situations listed above, this means that the
net z components of spin angular momentum (labeled Ms) are +1, 0, 0, and −1 a.u.,
respectively. The spin combinations αβ + βα [from the triplet (5-43b)] and αβ − βα

Figure 5-3 � The angular momentum vectors for α and β precess around the magnetic field axis
z. The z components of these vectors are constant and have values of + 1

2 and − 1
2 a.u. respectively.
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Figure 5-4 � Energy levels for singlet and triplet levels of 1s2s helium in (a) absence, and
(b) presence of an external magnetic field.

[from the singlet (5-42)] are linear combinations of αβ and βα. However, since these
two functions have the same value for the z component of angular momentum (zero),
their linear combinations will also have that value. It follows that the z components
of the spin angular momenta of the triplet of states (5-43) are +1, 0, and −1 a.u., and
for the singlet (5-42) it is zero. Because the electrons are charged, these spin angular
momenta correspond to spin magnetic moments, which interact differently with the
applied magnetic field to give splitting of the triplet (see Figure 5-4). It is customary
to refer to all three spin states in (5-43) as having parallel spins even though the vector
diagram for the (5-43b) state is not particularly in accord with this terminology. For
the singlet state, the spins are said to be opposed, or antiparallel.

5-6 The Self-Consistent Field, Slater-Type Orbitals,
and the Aufbau Principle

Up to now we have used wavefunctions that, while not being eigenfunctions of the
hamiltonian, are eigenfunctions of an “effective hamiltonian” obtained by ignoring the
interelectronic repulsion operator 1/rij . That is, these wavefunctions would be exactly
correct if the electrons in helium were attracted by the nucleus, but did not repel each
other. For this reason, we have referred to this as an independent electron approxi-
mation. Because we have neglected interelectronic repulsion, we cannot expect such
a wavefunction to give very good numerical predictions of charge density or energy.
We can compare the energy of He in the 1s2 (ground) state as predicted by our inde-
pendent electron wavefunction and Happrox(−108.84 eV) with the experimental value
(−79.0143 eV). (See Table 5-1.) This shows that the predicted energy is much too low,
which is understandable since we have neglected an important repulsive (hence positive)
interaction energy. But we can account for much of this neglected energy by calculating
the average value of the energy using H (with 1/r12 included) instead of Happrox . This
gives a value of −74.83 eV—much better, though now too high by more than 4 eV. Even
though we have now accounted for interelectronic repulsion, there is still a problem:
Because we ignored interelectronic repulsion in arriving at these wavefunctions, they
predict electron densities that are too large near the nucleus. In reality, interelectronic
repulsion prevents so much build-up of charge density. Methods have been devised that
partially overcome this problem by retaining the convenient form of orbital products
but modifying the formulas for the orbitals themselves to make them more diffuse.
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TABLE 5-1 � Average Values for Energy Calculated from Helium Atom Ground State
Approximate Wavefunctionsa

Wavefunction description Ē(eV)

1) Product of He+ orbitals −74.83
2) Product of hyrdrogenlike orbitals with ζ fixed by SCF

method −77.48
3) Best product-type wavefunction −77.870917
4) Nonorbital wavefunction of Pekeris [9]. This wavefunction

uses functions of r1, r2 and r12 as coordinates and has
the form of an exponential times a linear combination of
1078 terms −79.00946912

aĒ = ∫
ψ∗Hψdτ/

∫
ψ∗ψdτ , where H is given by Eq. (5-2).

Let the ground state of helium be our example. We take the ordinary independent-
electron wavefunction as our initial approximation:

1s(1)1s(2) ≡ √
8/π exp(−2r1)

√
8/π exp(−2r2) (5-55)

These atomic orbitals are correct only if electrons 1 and 2 do not “see” each other via
a repulsive interaction. They really do repel each other, and we can approximate this
repulsion by saying that electron 2 “sees” electron 1 as a smeared out, time-averaged
charge cloud rather than the rapidly moving point charge that is actually present. The
initial description for this charge cloud is just the absolute square of the initial atomic
orbital occupied by electron 2: [1s(2)]2. Our approximation now has electron 1 moving
in the field of a positive nucleus embedded in a spherical cloud of negative charge.
Thus, for electron 1, the positive nuclear charge is “shielded” or “screened” by electron
2. Hence, electron 1 should occupy an orbital that is less contracted about the nucleus.
Let us write this new orbital in the form

1s′(1) =
√

ζ 3/π exp(−ζ r1) (5-56)

where ζ is related to the screened nuclear charge seen by electron 1. The mathematical
methods used to evaluate ζ will be described later in this book.

Next we turn to electron 2, which we now take to be moving in the field of the
nucleus shielded by the charge cloud due to electron 1, now in its expanded orbital.
Just as before, we find a new orbital of form (5-56) for electron 2. The value of ζ

that we calculate for electron 2, however, will be different from what we found for
electron 1 because the shielding of the nucleus by electron 1 is different from what it
was by electron 2 in our previous step. We now have a new distribution for electron
2, but this means that we must recalculate the orbital for electron 1 since this orbital
was appropriate for the screening due to electron 2 in its old orbital. After revising
the orbital for electron 1, we must revise the orbital for electron 2. This procedure
is continued back and forth between electrons 1 and 2 until the value of ζ converges
to an unchanging value (under the constraint that electrons 1 and 2 ultimately occupy
orbitals having the same value of ζ ). Then the orbital for each electron is consistent
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with the potential due to the nucleus and the charge cloud for the other electron: the
electrons move in a “self-consistent field” (SCF).

The result of such a calculation is a wavefunction in much closer accord with the
actual charge density distributions of atoms than that given by the complete neglect of
interelectron repulsion.7 A plot of the electron density distribution in helium as given
by wavefunction (5-55) and by a similar wavefunction with optimized ζ is given in
Fig. 5-5. Because each electron senses only the time-averaged charge cloud of the
other in this approximation, it is still an independent-electron treatment. The hallmark
of the independent electron treatment is a wavefunction containing only a product of
one-electron functions. It will not contain functions of, say, r12, which would make ψ

depend on the instantaneous distance between electrons 1 and 2.
Atomic orbitals that are eigenfunctions for the one-electron hydrogenlike ion (for

integral or nonintegral Z) are called hydrogenlike orbitals. In Chapter 4 we noted that
many hydrogenlike orbitals have radial nodes. In actual practice, this mathematical
aspect causes increased complexity in solving integrals in quantum chemical calcula-
tions. Much more convenient are a class of modified orbitals called Slater-type orbitals
(STOs). These differ from their hydrogenlike counterparts in that they have no radial
nodes. Angular terms are identical in the two types of orbital. The unnormalized radial
term for an STO is

R(n,Z, s) = r(n−1) exp[−(Z − s)r/n] (5-57)

Figure 5-5 � Electron distribution in helium as given by SCF and unshielded independent electron
approximations.

7In practice, mathematical techniques have been found that lead to a self-consistent solution without explicit
iteration between evolving AOs that converge to some final optimized ζ . Examples are described in Chapters 7
and 12. A thorough discussion of the SCF and related methods is given in Chapter 11.
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where Z is the nuclear charge in atomic units, n is the principal quantum number, and
s is a “screening constant” which has the function of reducing the nuclear charge Z

“seen” by an electron. Slater [7] constructed rules for determining the values of s

that will produce STOs in close agreement with those one would obtain by an SCF
calculation. These rules, appropriate for electrons up to the 3d level, are

1. The electrons in the atom are divided up into the following groups: 1s|2s,2p|3s,
3p|3d.

2. The shielding constant s for an orbital associated with any of the above groups is
the sum of the following contributions:

a) Nothing from any electrons in groups to the right (in the above list) of the group
under consideration

b) 0.35 from each other electron in the group under consideration (except 0.30 in
the 1s group)

c) If the orbital under consideration is an s or p orbital, 0.85 for each electron with
principal quantum number less by 1, and 1.00 for each electron still “farther in”;
for a d orbital, 1.00 for all electrons farther in

For example, nitrogen, with ground state configuration 1s22s2 2p3, would have the
same radial part for the 2s and 2p STOs. This would be given by the formula (n = 2,
Z = 7, s = 4 × 0.35 + 2 × 0.85 = 3.1)

R2s,2p(2, 7, 3.1) = r(2−1) exp[−(7 − 3.1)r/2] = r exp(−1.95r)

For the 1s level, n = 1,Z = 7, s = 0.30, and

R1s = exp(−6.7r)

Comparing orbital exponents, we see that the 1s charge cloud is compressed much
more tightly around the nucleus than are the 2s and 2p “valence orbital” charge clouds.
Slater-type orbitals are very frequently used in quantum chemistry because they provide
us with very good approximations to self-consistent field atomic orbitals (SCF–AOs)
with almost no effort.

Clementi and Raimondi [8] have published a refined list of rules for the shielding
constant, which extends to the 4p level. Their rules include contributions to shielding
due to the presence of electrons in shells outside the orbital under consideration. Such
contributions are not large, and, up to the 3d level, there is reasonably good agreement
between these two sets of rules.

The fact that STOs have no radial nodes results in some loss of orthogonality. Angular
terms still give orthogonality between orbitals having different l or m quantum numbers,
but STOs differing only in their n quantum number are nonorthogonal. Thus, 1s, 2s,
3s, . . . are nonorthogonal. Similarly 2pz , 3pz , . . . or 3dxz , 4dxy, . . . are nonorthogonal.
In practice, this feature is handled easily. The only real problem arises if one forgets
about this nonorthogonality when making certain calculations.

When carrying out SCF calculations on multielectronic atoms, one finds that the
orbital energies for 2s and 2p functions are not the same. Similarly, 3s 3p, and 3d orbitals
are nondegenerate. Yet these orbitals were degenerate in the one-electron hydrogenlike
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system in which energy was a function of n but not of l or m. Why are these orbital
energies nondegenerate in the many-electron calculation? A reasonable explanation can
be found by considering the comparative effectiveness with which a pair of 1s electrons
screen the nucleus from a 3s or a 3p electron. Comparing the 3s, 3p, and 3d hydrogenlike
orbital formulas in Table 4-2 shows that the 3s orbital is finite at the nucleus, decreasing
proportionally to r for small r . The 3p orbitals vanish at the nucleus but grow as r for
small r . The 3d orbitals vanish at the nucleus but grow as r2 for small r . The result of
all this is that an s electron spends a larger amount of its time near the nucleus than a p
electron of the same principal quantum number, the p electron spending more time near
the nucleus than the d, etc. Hence, the s electron penetrates the “underlying” charge
clouds more effectively and is therefore less effectively shielded from the nucleus.
Since the s electron sees a greater effective nuclear charge, its energy is lower than
that of the p electron. (This effect is not obvious in STOs since the 3s and 3p STOs
have the same radial function which vanishes at the nucleus. However, the STO for 3d
does reflect the nondegeneracy since Slater’s rules give it a different screening constant
from 3s or 3p.)

The tendency for higher l values to be associated with higher orbital energies leads
to the following orbital ordering:

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 5d 4f 6p 7s 6d 5f . . . (5-58)

When we get to principal quantum numbers of 3 and higher, the energy differences
between different l values for the same n become comparable to the differences between
different n levels. Thus, in some atoms, the 4s level is almost the same as the 3d level,
etc.

In compiling data on ground states of atoms, Hund noticed that greatest stability
results if the AOs in a degenerate set are half-filled with electrons before any of them
are filled. This generalization, called Hund’s rule, is sometimes stated in an alternative
form: Of the states associated with the ground state configuration of an atom or ion,
those with greatest spin multiplicity lie deepest in energy. Chemists generally find the
former version to be more convenient, spectroscopists the latter. The reason for the
equivalence of these statements will emerge later in this chapter.

EXAMPLE 5-4 An unexcited Fe atom has an electronic configuration of
1s22s22p63s23p64s23d6. What is its spin multiplicity?

SOLUTION � All electrons below 3d6 are spin-paired in orbitals, hence contribute nothing to
MS . In 3d6, we have 4 electrons that can each occupy a 3d AO alone. If we follow Hund’s
rule and seek maximum spin multiplicity, we make all their spins the same (α). Then maximum,
MS =4 · 1

2 =2, so S =2, and spin multiplicity is 2S + 1=5. The atom has a quintet ground “state”
(really five states). �

The energy-ordering scheme (5-58) coupled with the Pauli or exclusion principle
and Hund’s rule leads us to a simple prescription for “building up” the electronic con-
figurations of atoms. This aufbau principle is familiar to chemists and leads naturally
to a correlation between electronic structure and the periodic table. The procedure is to
place all the electrons of the atom into atomic orbitals, two to an orbital, starting at the
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low-energy end of the list (5-58) and working up in energy. In addition, when filling a
set of degenerate levels like the five 3d levels, one half-fills all the levels with electrons
of parallel spin before filling any of them. This prescription enables one to guess the
electronic configuration of any atom, once its atomic number is known, unless it hap-
pens to put us into a region of ambiguity, where different levels have almost the same
energy. (Electronic configurations for such atoms are deduced from experimentally
determined chemical, spectral, and physical properties.) The configuration for carbon
(atomic number 6) would be 1s22s22p2, with the understanding that p electrons occupy
different p orbitals and have parallel spins. (Recall that we expect the most stable of all
the states arising from the configuration 1s22s22p2 to be the one of highest multiplicity.
The 2p electrons can produce either a singlet or a triplet state just as could the two
electrons in the 1s2s configuration of helium. The triplet should be the ground state and
this corresponds to parallel spins, which requires different p orbitals by the exclusion
principle.)

It is important to realize that the orbital ordering (5-58) used in the aufbau process
is not fixed, but depends on the atomic number Z. The ordering in (5-58) cannot be
blindly followed in all cases. For instance, the ordering shows that 5s fills before 4d.
It is true that element 38, strontium, has a · · ·4p65s24d0 configuration. But a later
element, palladium, number 46, has · · ·4p64d105s0 as its ground state configuration.
The effect of adding more protons and electrons has been to depress the 4d level more
than the 5s level.

5-7 Electron Angular Momentum in Atoms

Most of our attention thus far has been with wavefunction symmetry and energy.
However, understanding atomic spectroscopy or interatomic interactions (in reactions
or scattering) requires close attention to angular momentum due to electronic orbital
motion and “spin.” In this section we will see what possibilities exist for the total
electronic angular momenta of atoms and how these various states are distinguished
symbolically.

We encountered earlier (Section 4-5) the notion that the total angular momentum for
a classical system is the vector sum of the angular momenta of its parts. If the system
interacts with a z-directed field, the total angular momentum vector precesses about
the z axis, so the z component continues to be conserved and continues to be equal to
the sum of z components of the system’s parts. Since quantum hydrogenlike systems
obey angular momentum relations analogous to a precessing classical system, it is this
z-axis behavior that we focus on as we seek to construct the nature of the total angular
momentum from the orbital and spin parts we already understand.

Because it is the total angular momentum that is conserved in a multicomponent
classical system, it is the total angular momentum that obeys the quantum rules we have
previously described for separate spin and orbital components. If we consider a one-
electron system, the combined spin-orbital angular momentum can be associated with
a quantum number symbolized by j (analogous to s and l). Then we can immediately
say that the allowed z components of total angular momentum are, in a.u., mj = ±j,

±(j − 1), . . . and that the length of the vector is
√

j (j + 1) a.u.
The implication of accepting total angular momentum as the fundamental quantized

quantity is that the spin and orbital angular momenta do not individually obey the
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quantum rules we have so far applied to them—s and l are not “good” quantum numbers.
However, for atoms of low atomic number they are in fact quite good, especially for
low-energy states, and we can continue to refer to the s and l quantum numbers in such
cases with some confidence. (Classically, this corresponds to cases where there is little
transfer of angular momentum between modes.)

5-7.A Combined Spin-Orbital Angular Momentum for
One-Electron Ions

The key to understanding the following discussion is to remember that a quantum
number l, s, or j really tells us three things:

1. It equals the maximum value of ml , ms , or mj . If l =2, the maximum allowed value
of ml is 2, and the maximum z component of orbital angular momentum is 2 a.u.

2. It allows us to know the length of the related angular momentum vector, l, s, or j,
in a.u. For j , this is given by

√
j (j + 1). If j = 2, the length of the total angular

momentum vector j is
√

6 a.u.

3. It allows us to know the degeneracy, g, of the energy level due to states having this
angular momentum. For s, this is 2s + 1. If s = 1/2, gs = 2. The corresponding l

degeneracies produce the s, p, d, f degeneracies of 1, 3, 5, 7.

Using the hydrogen atom as our example, let us consider what the total electronic
angular momentum is in the ground (1s) state. For an s AO, l = 0, and so there is no
orbital angular momentum. This means that the total angular momentum is the same
as the spin angular momentum, so j = s =1/2, mj =±1/2. The diagram for the vector
j, then, looks just like that for s (Fig. 5-3).

Figure 5-6 � (a) Maximum z components of orbital and spin angular momenta for a p electron
leading to a total z component of 3/2. (b) The four states corresponding to the j =3/2 vector assuming
its possible z intercepts (3/2, 1/2, −1/2,−3/2).
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Figure 5-7 � (a) j =1/2, resulting when l is oriented with its maximum z intercept and s is oriented
in its other orientation (other than as in Fig. 5-6). (b) The two states corresponding to the J = 1/2
vector assuming its possible z intercepts (1/2,−1/2).

More interesting is an excited state, say 2p. Now l = 1 and s = 1/2. From l = 1 we
can say that the maximum orbital z component of angular momentum is 1 a.u. s = 1/2
tells us that there is an additional maximum spin z component of 1/2. The maximum
sum, then, is 3/2 for the z component of j. But, if this is the maximum mj , then j

itself must be 3/2 and the length of j must be
√

(3/2)(5/2) = 1.94 a.u. There must be
2j + 1 = 4 allowed orientations of j, with z intercepts at 3/2, 1/2, −1/2, −3/2 in a.u.
(Fig. 5-6).

We are not yet finished with the 2p possibilities. The total angular momentum is
the sum of its orbital and spin parts, and we have so far found the way they combine
to give the maximum z component. But this is not the only way they can combine. It
is possible to have ml = 1 and ms = −1/2. Then the maximum mj = 1/2, so j = 1/2,
giving us a vector j of length

√
(1/2)(3/2) a.u. and two orientations (Fig. 5-7).

So far we have identified six states, four with j = 3/2 and two with j = 1/2. This
is all we should expect since we have three 2p AOs and two spins, giving a total
of six combinations. It seems, though, that we could generate some more states by
now letting ml = 0 or −1 and combining these with ms = ±1/2. However, these
possibilities are already implicitly accounted for in the multiplicity of states we rec-
ognize to be associated with the j = 3/2, 1/2 cases already found. This illustrates
the general approach to be taken when combining two vectors: Orient the larger
vector to give maximum z projection, and combine this projection with each of the
allowed z components of the smaller vector. This gives all of the possible mj (max)
values, hence all of the j values. In other words, it gives us all of the allowed vec-
tors, j, each oriented with maximum z component, and it remains only to recognize
that these can have certain other orientations corresponding to z intercepts of mj − 1,
mj − 2, . . . ,−mj .

States can be labeled to reflect all of the angular momentum parts they possess. The
main symbol is simply s, p, d, f, g, etc. depending on the l value as usual. A superscript
at left gives spin multiplicity (2s + 1) for the states. A subscript at right tells the j

quantum number for the states. If an individual member of the group of states having
the same j value is to be cited, it is identified by placing its mj value at upper right.
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Thus, all six of the states discussed above can be referred to as 2p states. The two
groups having different total angular momentum are distinguished as 2p3/2 and 2p1/2.

One of the four states in the former group is the 2p−1/2
3/2 state.

The general form of the symbol is 2s+1l
mj

j . Such symbols are normally called term
symbols, and the collection of states they refer to is called a term (except when an
individual state is denoted by inclusion of the mj value).

The reason for distinguishing between the 2p3/2 and 2p1/2 terms is that they occur
at slightly different energies. This results from the different energies of interaction
between the magnetic moments due to spin and orbital motions. For instance, if l and
s are coupled so as to give the maximum j , their associated magnetic moments are
oriented like two bar magnets side by side with north poles adjacent. This is a higher-
energy arrangement than the other extreme, where l and s couple to give minimum j ,
acting as a pair of parallel bar magnets with the north pole of each next to the south
pole of the other. So 2p1/2 should be lower in energy than 2p3/2 for hydrogen.

EXAMPLE 5-5 For a hydrogen atom having n = 3, l = 2, what are the possible
j values, and how many states are possible? Indicate the lengths of the j vectors
in a.u. What term symbols apply?

SOLUTION � If l = 2 (d states), there are five AOs and two possible spins, so we expect a total
of ten possible states. The maximum possible values of the z-component of angular moment for
orbital and spin respectively are 2 and 1/2. So the maximum value is 5/2 giving a vector length
of

√
35/4 a.u. and six possible z projections, hence six states. The term symbol is 2d5/2. The

remaining possible j value is 2 − 1/2 = 3/2, accounting for four more states and giving a vector
length of

√
15/4 a.u. and a term symbol of 2d3/2. �

5-7.B Spin-Orbital Angular Momentum for Many-Electron Atoms

Much of what we have seen for one-electron ions continues to hold for many-electron
atoms or ions. All the symbolism is the same, except that capital letters replace low-
ercase: The quantum numbers are L, S, and J , and the main symbol becomes S, P, D,
F, G, etc. There is a total orbital angular momentum vector L with quantum number
L that equals the maximum value of ML. The length of L is

√
L(L + 1) a.u., and it

has 2L + 1 orientations. Vectors S and J behave analogously. When constructing the
vectors J, we continue to place the larger of L and S to give maximum z intercept,
and add to this the possible z intercepts of the smaller vector. The situation, then, is
just as before except that we need to figure out the possible values for ML and MS by
combining the allowed values of ml(1),ml(2), . . . and ms(1),ms(2), . . . .8

8This procedure of first combining individual orbital contributions to find L and spin contributions to find S
and then combining these to get J is referred to as “L–S coupling,” or “Russell–Saunders coupling.” The other
extreme is to first combine l and s for the first electron to give j(1), l and s for the second electron to give j(2), . . .

and then combine these individual-electron j’s to give J. This is more appropriate for atoms having high atomic
number (in which electrons move at relativistic speeds in the vicinity of the nucleus), and is referred to as “j–j

coupling.” We will not describe j–j coupling in this text. The reader should consult Herzberg [6] for a fuller
treatment.
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For example, if we have found that ML(max) = 2 (which means L = 2) and
Ms(max) = 1 (which means S = 1), we have that MJ (max) can be 2 + 1, 2 + 0, and
2 + (−1), or 3, 2, and 1. This means that the possible values of J are 3, 2, 1, giving
three different J vectors. Since L = 2 and S = 1, the term symbols for these three J

cases are 3D3, 3D2, and 3D1. Notice that the multiplicities of these three terms—7,
5, and 3, respectively, obtained from 2J + 1—total 15 states, which is just what we
should expect for the 3D symbol (spin multiplicity of 3, orbital multiplicity of 5). The
15 triplet-D states are found in three closely spaced levels, differing in energy because
of different spin-orbital magnetic interactions.

The problem remains, how do we find the ML and Ms values that allow us to construct
term symbols? There are two situations to distinguish in this context, and a different
approach is taken for each.

1. Nonequivalent Electrons. The first situation is exemplified by carbon in its
1s22s22p3p configuration. It is not difficult to show that the electrons in the 1s and
2s AOs contribute no net angular momentum and can be ignored: The spins of paired
electrons are opposed, hence cancel, and the s-type AOs have no angular momentum,
hence cannot contribute. However, even p, d, etc. sets of AOs cannot contribute if they
are filled because then any orbital momentum having z intercept ml is canceled by one
with −ml . The important result is that filled subshells do not contribute to orbital or
spin angular momentum. The remaining 2p and 3p electrons occupy different sets of
AOs, hence are called nonequivalent electrons.

Since these electrons are never in the sameAO, they are not restricted to have opposite
spins at any time—their AO and spin assignments are independent. There are three AO
choices (p1, p0, p−1) and two spin choices—six possibilities—for each electron, hence
36 unique possibilities. We should expect, therefore, 36 states to be included in our
final set of terms.

We first find the possible L values. ml for each electron is 1, 0, or −1. We orient the
larger of the l vectors to give the maximum ml(1) = +1 and orient the second l in all
possible ways, giving ml(2) = +1, 0,−1. (Since the vectors have equal length in this
case there is no “larger–smaller” choice to make.) The net ML values are +2,+1, 0,
and this tells us that the possible L values are 2, 1, 0.

Treating ms values similarly gives Ms = 1, 0, so S = 1, 0.
Thus, we have three L vectors and two S vectors. We now combine every one of the

L, S pairs. In each case, we again take the longer in its position of greatest z overlap
and combine it with the shorter in all of its orientations. This gives the J values shown
in Table 5-2. The appropriate term symbols follow from L, S, and J in each case.
Thus, our term symbols are 3D3, 3D2, 3D1, 1D2, 3P2, 3P1, 3P0,1P1, 3S1 and 1S0 for a
total of 7 + 5 + 3 + 5 + 5 + 3 + 1 + 3 + 3 + 1 = 36 states.

In the absence of external fields, these 36 states occur in 10 energy levels, one for
each term. These lie at different energies for several reasons. We have already seen,
in our discussion of 1s2s helium states, that different spin multiplicities are associated
with different symmetries of the spin wavefunction, meaning that the space part of
the wavefunctions also differ in symmetry. This has a significant effect on energy, so
1S and 3S, for example, have rather different energies. Different L values amount to
different occupancies of AOs, which also has an effect on the spatial wavefunctions, so
3P and 3S have different energies. Finally, we have already seen that different J values
correspond to different relative orientations of orbital and spin angular momentum
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TABLE 5-2 � L and S Values for Two
Nonequivalent Electrons and Resulting J Values
and Term Symbols

L S J Term

2 1






3
2
1

3D3
3D2
3D1

2 0 2 1D2

1 1






2
1
0

3P2
3P1
3P0

1 0 1 1P1

0 1 1 3S1

0 0 0 1S0

vectors, hence of magnetic moments. For light atoms, this is a relatively small effect,
so 3P2, 3P1, and 3P0 have only slightly different energies. The resulting energies for
states of carbon in 1s22s22p2, 1s22s22p3p, and 1s22s22p4p configurations are shown
in Fig. 5-8. Only the major term-energy differences are distinguishable on the scale of
the figure. The line for 3D is really three very closely spaced lines corresponding to
3D3, 3D2, and 3D1 terms.

2. Zeeman Effect. It was pointed out in Section 4-6 that the orbital energies of
a hydrogen atom corresponding to the same n but different ml undergo splitting when
a magnetic field is imposed. Now we have seen that spin angular momentum is also
present. Therefore, a proper treatment of the Zeeman effect requires that we focus on
total angular momentum, not just the orbital component. Since there are 2J + 1 states
with different MJ values in a given term, we expect each term to split into 2J + 1
evenly separated energies in the presence of a magnetic field, and this is indeed what
is seen to happen (through its effects on lines in the spectrum). For example, a 3P2
term splits into five closely spaced energies, corresponding to MJ = 2, 1, 0,−1,−2,

and a1P1 term splits into three energies.
A surprising feature of this phenomenon is that the amount of splitting is not the

same for all terms, despite the fact that adjacent members of any term always differ by
±1 unit of angular momentum on the z axis. For instance, the spacing between adjacent
members of the 3P2 term mentioned above is 1.50 times greater than that in the 1P1
term. It was recognized that terms wherein S = 0, so that J is entirely due to orbital
angular momentum (J = L), undergo “normal splitting”—i.e., equal to what classical
physics would predict for the amount of angular momentum and charge involved. On
the other hand, terms wherein J is entirely due to spin (L = 0, so J = S) undergo
twice the splitting predicted from classical considerations. [This extra factor of two
(actually 2.0023) was without theoretical explanation until Dirac’s relativistic treatment
of quantum mechanics.]

Terms wherein J contains contributions from both L and S have Zeeman splittings
other than one or two times the normal value, depending on the details of the way L and



Section 5-7 Electron Angular Momentum in Atoms 155

Figure 5-8 � Energy levels for carbon atom terms resulting from configurations 1s22s22p2,
1s22s22p3p, and 1s22s22p4p.

S are combined. The extent to which a term member’s energy is shifted by a magnetic
field of strength B is

�E = gβeMj B (5-59)

where βe is the Bohr magneton (Appendix 10) and g is the Landé g factor, which
accounts for the different effects of L and S on magnetic moment that we have been
discussing:

g = 1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
(5-60)

It is not difficult to see that this formula equals one when S = 0, J = L, and equals two
when L = 0, J = S. For the 3P2 term, S = 1, L = 1, J = 2, and g equals 1.5, indicating
that, in this state, half of the z-component of angular momentum is due to orbital
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motion, and half is due to spin (which is double-weighted in its effect on magnetic
moment).

3. Equivalent Electrons. Observe that the energy-level diagram for carbon
(Fig. 5-8) shows the 10 expected terms for the excited 2p3p and 2p4p configurations,
but not for the ground 2p2 configuration. There are no new terms for the latter case,
but some of the terms present for 2p3p or 2p4p are gone, namely 3D, 3S, and 1P. The
remaining terms account for 15 states. Evidently 21 states that are possible for a pair
of nonequivalent p electrons are not allowed for a pair of equivalent electrons in a p2

configuration. We will see that some of the states that are different for nonequivalent
electrons become one and the same for equivalent electrons and must be excluded.
Others are excluded by the Pauli exclusion principle because they would require two
electrons to be in the same AO with the same spin.

We now demonstrate the method for discovering the terms that exist for equivalent
electrons. This is more difficult than for nonequivalent electrons, even though there are
fewer terms. We first list all the orbital-spin combinations (called microstates), strike
out those that are redundant or that violate the Pauli exclusion principle, and then infer
from the remaining microstates what terms exist.

Taking the p2 case for illustration, we begin with the 36 microstates listed in
Table 5-3. Some of these microstates are equivalent to others. For instance,
2p1(1)2p1(2)α(1)β(2) is not a different state from 2p1(1)2p1(2)β(1)α(2). These both
correspond to a pair of electrons in the same pair of spin orbitals, 2p1 and 2p1. Since
electrons are indistinguishable, we cannot expect wavefunctions differing only in the
order of electron labels to correspond to different physical states. [The single state that
does exist would be accurately represented by 2p1(1)2p1(2)(α(1)β(2) − β(1)α(2)),
which is a linear combination of the microstates. But we do not need to go to this level
of detail when finding terms. We only need to recognize that there is but one state here
and omit one of the microstates as superfluous.] Accordingly, we strike out rows 3, 19,
and 35 from Table 5-3, labeling them “R” for redundant.

Another way to recognize this equivalence is to observe that the microstates deemed
redundant differ only by an interchange of a pair of electrons. This reveals that the
set of four microstates with 2p1(1)2p0(2) is equivalent to the set with 2p0(1)2p1(2).
Therefore, we can strike out rows 13–16. A similar argument removes rows 25–32.
Already we have removed 15 microstates.

Next we look for violations of the Pauli exclusion principle. This leads us to strike
out rows 1, 4, 17, 20, 33, and 36, labeling them “P” for Pauli. Our remaining microstates
number 15 and are reassembled in Table 5-4, along with values of the quantum numbers
for z components of the relevant angular momentum vectors for individual electrons as
well as for their sum.

At this stage of the argument, the final column of Table 5-4 (the term symbols) is not
yet known. We are about to fill out this column by making use of a simple rule that is
based on the diagrammatic device described earlier—placing the larger vector so that
it has the maximum z extension and then placing the shorter vector in all its allowed
orientations. It is not difficult to see that the maximum resultant z component (MJ ) can
be achieved in one and only one way, namely when both vectors give their maximum
z projection. This means that the maximum-MJ -member of a given set of states in
the same term should be recognized as corresponding to one and only one microstate,
because there is only one way to achieve this orientation. So we look for this maximum



Section 5-7 Electron Angular Momentum in Atoms 157

TABLE 5-3 � Unrestricted List of Space–Spin Combinations for a
Pair of Electrons (Same Subshell). R = “Redundant,” P = “Pauli”

Electron number

Row number 1 2 1 2 Comment

1 p1 p1 α α P
2 p1 p1 α β

3 p1 p1 β α R
4 p1 p1 β β P
5 p1 p0 α α

6 p1 p0 α β

7 p1 p0 β α

8 p1 p0 β β

9 p1 p−1 α α

10 p1 p−1 α β

11 p1 p−1 β α

12 p1 p−1 β β

13 p0 p1 α α R
14 p0 p1 α β R
15 p0 p1 β α R
16 p0 p1 β β R
17 p0 p0 α α P
18 p0 p0 α β

19 p0 p0 β α R
20 p0 p0 β β P
21 p0 p−1 α α

22 p0 p−1 α β

23 p0 p−1 β α

24 p0 p−1 β β

25 p−1 p1 α α R
26 p−1 p1 α β R
27 p−1 p1 β α R
28 p−1 p1 β β R
29 p−1 p0 α α R
30 p−1 p0 α β R
31 p−1 p0 β α R
32 p−1 p0 β β R
33 p−1 p−1 α α P
34 p−1 p−1 α β

35 p−1 p−1 β α R
36 p−1 p−1 β β P
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TABLE 5-4 � Allowed Space-Spin Combinations and M Quantum Numbers for a Pair of
p Electrons (Same Subshell)

Microstate ml(1) ml(2) ms(1) ms(2) ML MS MJ State term

p1p1αβ 1 1 1/2 −1/2 2 0 2 1D2
2

p1p0αα 1 0 1/2 1/2 1 1 2 3P2
2

p1p0αβ 1 0 1/2 −1/2 1 0 1 (1D2
1)

p1p0βα 1 0 −1/2 1/2 1 0 1 (3P2
1)

p1p0ββ 1 0 −1/2 −1/2 1 −1 0 (3P2
0)

p1p−1αα 1 −1 1/2 1/2 0 1 1 (3P1
1)

p1p−1αβ 1 −1 1/2 −1/2 0 0 0 (1D2
0)

p1p−1βα 1 −1 −1/2 1/2 0 0 0 (3P1
0)

p1p−1ββ 1 −1 −1/2 −1/2 0 −1 −1 (3P2
−1)

p0p0αβ 0 0 1/2 −1/2 0 0 0 1S0
0

p0p−1αα 0 −1 1/2 1/2 −1 1 0 (3P0
0)

p0p−1αβ 0 −1 1/2 −1/2 −1 0 −1 (1D2
−1)

p0p−1βα 0 −1 −1/2 1/2 −1 0 −1 (3P1
−1)

p0p−1ββ 0 −1 −1/2 −1/2 −1 −1 −2 (3P2
−2)

p−1p−1αβ −1 −1 1/2 −1/2 −2 0 −2 (1D2
−2)

MJ and, from its microstate, get the L and S values that go with it. That gives us the
information we need to establish the term symbol.

We start, then, by seeking the maximum MJ value in Table 5-4. This is MJ = 2, and
it occurs twice (in the first two rows). The first of these goes with ML = 2, MS = 0.
Since these result when L and S are giving their maximum z component, we conclude
that L = 2, S = 0. This, then, is a member of the 1D2 term. (It is the 1D2

2 member of
that term, since MJ = 2.) We label this row 1D2

2 and proceed to select microstates that
can account for the other four members of this term. Our choice is controlled by the
requirements that (1) the MJ values for the other members must be 1, 0,−1,−2, and
(2) we cannot have an |Ms | value larger than zero or an |ML| value larger than 2. (That
would be impossible for states resulting from vectors having L = 2 and S = 0.) Our
selections are indicated in Table 5-4, with parentheses to indicate that these assignments
follow from recognition of the leading member 1D2

2. (All are symbolized as 1D2.)
There is somearbitrariness inselecting the“inner”members, forwhich |MJ |<J : The

parenthetical term 1D2
2 could just as easily be assigned to p1p0βα as p1p0αβ. (Actually,

neither of these microstates is a correct wavefunction for 1D2
2. A linear combination of

them is. But, if we only wish to designate term symbols, we need not worry about this.)
We have accomplished already the identification of a term 1D2 and the elimination of

five microstates from our list. The other microstate having MJ = 2 has ML = MJ = 1,
so we know this goes with L = 1, S = 1 and has the symbol 3P2

2. Again, four other
members exist down the table, and we select them, being careful that |ML| and |Ms |
do not exceed 1, while MJ = 1, 0,−1,−2.

At this point, we must recognize that we are not through with the 3P family. The
existence of the 3P part of the symbol implies the existence of nine states, but 3P2
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accounts for only five of them. The others come from 3P1 and 3P0, resulting from
ML = 1 with Ms = 0,−1. (We did not worry about this for the 1D2 term because only
five states are implied by 1D.) So we seek the microstates associated with these terms
and label them as shown in the table.

Only one microstate remains. For this ML = Ms = 0, so this is a state labeled 1S0
0.

The term symbols for the p2 configuration, then, are 1D2, 3P2, 3P1, 3P0, 1S0, for a
total of 15 states. The energies for these terms are shown in Fig. 5-8. The five terms
fall into three energy groups, since the 3P terms are found to be very close in energy.
High resolution spectra can be used to see the slight energy differences between terms
that appear to be at the same level at the energy scale used in Fig. 5-8. Delving further,
the degenerate energies of microstates in the same term can be made to separate by
imposing a magnetic field (Zeeman effect).

Based on spectroscopic assignments of energy levels for large numbers of atoms,
Hund proposed a set of rules enabling one to predict the energy ordering for terms
associated with equivalent electrons. These rules are, in order of decreasing influence:

1. Terms having greater spin multiplicity lie lower in energy.

2. Within each spin multiplicity, terms having greater L lie lower.

3. Within the same L and S, levels of different J behave oppositely, according to
whether the subshell is more or less than half-filled: If less than half-filled, terms
with lower J lie lower.

According to these rules, the five levels for carbon in its 1s22s22p2 configuration
should be, in order of increasing energy, 3P0, 3P1, 3P2 (closely spaced) followed by 1D0,
followed by 1S0. The actual energies (in cm−1) are, respectively, 0, 16.4, 43.5, 10194.8,
21647.7 (Fig. 5-8). The order of states for the excited 2p3p and 2p4p configurations
is different. This is not a breakdown of Hund’s rules because these are not equivalent-
electron cases.

Hund’s first rule is the source of the aufbau rule, cited earlier, that each AO of a
subshell becomes half-filled before any of them become filled with electrons. The
equivalence of these statements is easily demonstrated (Problem 5-30).

One can use Hund’s rules to find the lowest-energy state term symbol without going
through the tedious microstate process just described. For an atom having an outer
subshell configuration of p2 we would first recognize that we seek maximum S, so the
electrons must have parallel spin, giving S = 1. (We use Hund’s most influential rule
first.) Subject to this constraint, we seek maximum L. Since the electrons cannot both
be in p1 with the same spin, p1p0 is next best, giving maximum ML = 1, so L = 1.

S = 1,L = 1 gives J = 2, 1, 0, so we know the corresponding terms are 3P2, 3P1, 3P0.
Since the 2p subshell is less than half- filled, 3P0 is the ground term.

5-8 Overview

This chapter describes the new features that appear when we deal with systems having
more than one electron. One of these features, interelectron repulsion, is easy to
understand in its manifestation as operators in the hamiltonian and as coulomb repulsion
integrals, J , in the average energy expression. Another feature, antisymmetry for
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electron exchange and the resulting existence of exchange integrals, K , is unfamiliar
and unintuitive, without a classical counterpart, yet is enormously important in its effect
on electronic structure.

In addition to these features, we have noted the importance of recognizing that atomic
states conserve magnitude and z component of total angular momentum. Using this
permits us to characterize states in terms of J , L, and S (even though the latter two are
not “good” quantum numbers) for ground and excited configurations. This is essential
in atomic spectroscopy (a topic we do not pursue in this book) and also allows one,
with the assistance of Hund’s rules, to predict the energy order for states associated
with the ground configuration of any atom.

In closing this chapter, we should emphasize again a point frequently forgotten by
chemist. In the orbital approach to many-electron systems we have a convenient approx-
imation. This is an imperfect but useful way to describe atomic structure. There are
more accurate ways to approximate eigenfunctions of many-electron hamiltonians, but
this usually involves more difficulty in interpretation. The orbital representation of ψ

appears to be the best compromise between accuracy and convenience for most chemical
purposes.

5-8.A Problems

5-1. Write down the hamiltonian operator for the lithium atom, in a.u.

5-2. Calculate the values of r̄1and r̄2 consistent with the He wavefunction ψ(1, 2) =
1s(1)2s(2) . . . (Eq. 5-11).

5-3. Calculate the energy in electron volts of a photon with associated wavelength
0.1 a.u. Compare this result with the ionization energy in electron volts of the
hydrogen atom in its ground state. Why is this comparison relevant?

5-4. Show that the wavefunction (5-15) is normalized if the 1s and 2s orbitals are
orthonormal.

5-5. Show that the wavefunction (5-16) is antisymmetric with respect to exchange of
electron coordinates.

5-6. Show that the wavefunction (5-37) would vanish if 2s were replaced throughout
by 1s, giving a 1s3configuration.

5-7. Produce a totally antisymmetric wavefunction starting from the configuration
1s(1)α(1)2p(2)β(2)1s(3)β(3). Use the method described for Eq. (5-37) and use
a determinantal function as a check.

5-8. Set up the integral of the product between (1s1s2sαβα)* and 2s1s1sααβ. (Use
symbols rather than explicit atomic orbital formulas.) Factor the integral into
a product of integrals over one-electron space functions and one-electron spin
functions. Indicate the value of each of the resulting six integrals and of their
product.

5-9. a) Write down the Slater determinantal wavefunction for the configuration
1s1s̄2pz .
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b) Expand this determinant into a linear combination of products.
c) Write down the nonzero part of expansion (b) when r3 = 0, r1 = 1 a.u., r2 = 2

a.u. [Do not evaluate the expression; just use symbols like 1s (r = 1).] Also
write down the nonzero part of (b) when r2 = 0, r1 = 1, r3 = 2, and when
r1 =0, r2 =2, r3 =1. Is there any physical difference between saying “electron
3 is at the nucleus” and saying “an electron is at the nucleus?” Explain.

5-10. Wavefunction (5-38) describes a member of a doublet. Write the wavefunction
for the other member.

5-11. A particle is capable of being in any one of three spin states. Call them α, β,
and γ . Suppose you have two such particles in a molecule.

a) Write down all the spin functions you can that are symmetric for exchange
of these two particles. (Do not worry about normalization.)

b) Write down all the antisymmetric cases.

5-12. The following wavefunction is proposed for an excited state of the lithium atom

ψ = 1√
6

∣∣∣∣∣∣∣

1s(1) 1s(2) 1s(3)

2s(1) 2s(2) 2s(3)

3s(1) 3s(2) 3s(3)

∣∣∣∣∣∣∣

Here 1s, 2s, and 3s are eigenfunctions for the Li2+ hamiltonian.

a) Does this wavefunction satisfy the Pauli exclusion principle? Explain.
b) Write the exact H for the lithium atom in atomic units.
c) Is ψ an eigenfunction for the exact hamiltonian?
d) If interelectronic repulsion terms are neglected in H , what energy, in a.u., is

associated with ψ?
e) What z component of spin and orbital angular momentum (in atomic units)

would you expect for the atom in this state, ignoring any nuclear contribution?

5-13. Write the normalized Slater determinantal wavefunction for beryllium in the
1s22s2 configuration. Do not expand the determinant.

5-14. Write down the ground state configuration for the fluorine atom. Use Slater’s
rules to find the orbital exponents ζ = (Z − s)/n for 1s and 2s, 2p orbitals.

5-15. Show that the average value of an operator for a state described by an eigenfunc-
tion for that operator is identical to the eigenvalue associated with that eigen-
function.

5-16. Explain briefly the observation that the energy difference between the
1s22s1(2S1/2) state and the 1s22p1(2P1/2) state for Li is 14,904 cm−1, whereas
for Li2+ the 2s1(2S1/2) and 2p1(2P1/2) states are essentially degenerate. (They
differ by only 2.4 cm−1.)

5-17. In Chapter 4 it was stated that the magnitude of the square of the angular momen-
tum is given by l(l + 1) a.u., and that z components can be any of the values
−l,−l + 1, . . . l − 1, l a.u. Similar relations hold for spin. From this fact plus
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the knowledge that the possible z components of spin angular momentum are
± 1

2 a.u., calculate the length of the spin angular momentum vector.

5-18. It has been shown that, for a single spinning electron, two spin states are possible
having z components of spin angular momentum of +1/2 and −1/2 a.u. For two
unpaired electrons, the state of greatest multiplicity is a triplet (Ms =+1, 0,−1).
Show that, in general, the maximum spin multiplicity resulting from n unpaired
electrons equals n + 1.

5-19. You have been shown symbolically that 1s(1)2s(2) ± 2s(1)1s(2) and α(1)β(2) ±
β(1)α(2) are symmetric or antisymmetric for exchange of electron labels (elec-
tron coordinates). For a more concrete and familiar example, take two functions:
f (x) = exp(x) and g(y) = y3. Construct combinations of these functions that
are symmetric and antisymmetric for exchange of x and y coordinates. Set x =1
and y = 2 and evaluate each function. Now set x = 2 and y = 1 and evaluate
again. Compare results.

5-20. Give all the allowed term symbols for a hydrogen atom (a) in the n = 1 level,
(b) in the n = 2 level. In each case, total up the states to see whether you have
the expected number.

5-21. Consider the following helium atom wavefunction:

ψ = 1s(1)3d+2(2)α(1)α(2)

a) Is this a satisfactory wavefunction in the sense of meeting general symme-
try conditions resulting from particle indistinguishability and the exclusion
principle? If not, how would you modify it to make it satisfactory?

b) Identify the term to which this state (modified if necessary) belongs.

5-22. How many states exist for the configuration spd?

5-23. A group of related terms has the common symbol 2P. (This is called a term
multiplet.)

a) What are the full term symbols for this multiplet?
b) How many energy levels exist (in the absence of a magnetic field) for this

multiplet?
c) Indicate into how many levels each member of the multiplet splits in the

presence of an external magnetic field.

5-24. Given the following space part of an approximate wavefunction for a Li+ ion:
(1/

√
2)[1s(1)2p1(2) + 2p1(1)1s(2)],

a) Write a physically possible spin part for this wavefunction.
b) What energy would this state have (in a.u.) if the 1/r12 term in H did not

exist?
c) What average energy (expressed in terms of symbols like J ) would this state

have using the correct H (including 1/r12)?
d) You have not been shown the rules for operating with S2, the operator for the

square of total spin angular momentum, but you can nevertheless guess what
the result would be if S2 operates on this state function. What is your guess?
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5-25. A state in the term 3D3 is described by the wavefunction ψ . What is the value of
x in each of the expressions Op ψ = xψ , where Op is as given below? (Assume
L–S coupling to be valid. If more than one x is possible, list them all.) (a) L2

(b) S2 (c) J 2 (d) Lz (e) Sz (f) Jz .

5-26. Carbon (1s22s22p2) and oxygen (1s22s22p4) have a “symmetrical” relation in
their 2p occupancy: C has one electron less than a half-filled subshell, O has one
electron more. Another way of stating this is to note that C has 2 electrons and
4 holes in its 2p shell, while O has 2 holes and 4 electrons.

a) Show that this leads to the same lowest-energy family (or “multiplet”) of term
symbols, 3P2,0,1.

b) How do these atoms differ in the energy-ordering of these three terms?
c) Show that this agreement in lowest-energy multiplet terms holds in general

for atoms having this symmetrical occupation relation.

5-27. Predict the ground state term symbol for each of the following atoms.

a) Na (1s22s22p63s)
b) P (1s22s22p63s23p3)
c) Ne (1s22s22p6)
d) Ti (1s22s22p63s23p64s23d2)

5-28. Calcium atoms are excited to the [Ar]4s4p configuration.

a) How many states are there?
b) What are the term symbols?

5-29. a) Find all the terms for boron in its ground configuration, 1s22s22p, and order
these terms according to energy.

b) Repeat for phosphorus, [Ne]3s23p3.

5-30. Explain how Hund’s first rule is equivalent to the aufbau rule that degenerateAOs
half-fill with electrons before any are filled, when forming the lowest-energy
state(s).

5-31. How many states exist for each of the following term multiplets?

a) 3D
b) 5F

5-32. For a given electron configuration, are all of the following terms possible?
Explain your reasoning. 2P3/2, 2P1/2, 1S0.

5-33. How many states exist for each of the following configurations? (a) sd (b) sp
(c) s2p (d) pd (e) dd (nonequivalent)

5-34. a) How many states are associated with the 4F term multiplet?
b) Write down the term symbols included in this multiplet.

5-35. By inspection, what is the term symbol with the maximum J value we can
have for the configuration sd? What other terms would be included in the same
multiplet?
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5-36. Derive a formula for the number of states that exist for two equivalent electrons
in a subshell having degeneracy g. How many states does this predict for p2?
for d2?

5-37. Evaluate the splitting between adjacent lines in Zeeman-split terms 3D3, 3D2,
3D1, 1D2, when B equals 1 tesla.

Multiple Choice Questions

(Try to answer these without referring to the text.)

1. Which one of the following is an acceptable (unnormalized) approximate wavefunc-
tion for a state of the helium atom?

a) [1s(1)1s(2) − 1s(1)1s(2)]α(1)α(2)

b) 1s(1)1s(2)[α(1)β(2) + β(1)α(2)]
c) [1s(1)2s(2) + 2s(1)1s(2)]α(1)α(2)

d) [1s(1)2s(2) + 2s(1)1s(2)][α(1)β(2) − β(1)α(2)]
e) None of the above is acceptable.

2. The spin multiplicity of an atom in its ground state and having the outer-shell con-
figuration 4s23d7 is

a) 19
b) 15
c) 7
d) 5
e) None of the above.

3. Which one of the following statements is NOT true for the ground state of the helium
atom?

a) The atom’s size (measured by rav) is larger than the size of He+ in its 1s state.
b) The ground state is a singlet.
c) The energy of the 2p0 orbital is above that of the 2s orbital.
d) The effective nuclear charge seen by both electrons is less than 2.
e) The atom’s electronic energy is equal to −108.8 eV.

4. The crudest orbital model for the ground state of He uses the 1s atomic orbitals for
He+, for which Z = 2. Which of the following statements describes correctly the
situation that pertains to a change to a more appropriate value?

a) The improved Z value is larger than 2, and the orbitals become more contracted.
b) The improved Z value is larger than 2, and the orbitals become more expanded.
c) The improved Z value is smaller than 2, and the orbitals become more contracted.
d) The improved Z value is smaller than 2, and the orbitals become more expanded.
e) The improved Z value is smaller than 2, but this only affects the computed energy,

and not orbital size.



Section 5-8 Overview 165

References

[1] O. Stern, Z. Physik 7, 249 (1921).

[2] W. Gerlach and O. Stern, Z. Physik 8, 110 (1922).

[3] E. G. Uhlenbeck and S. Goudsmit, Naturwissenschaften 13, 953 (1925); Nature
117, 264 (1926).

[4] R. Bichowsky and H. C. Urey, Proc. Natl. Acad. Sci. 12, 80 (1926).

[5] J. C. Slater, Phys. Rev. 34, 1293 (1929).

[6] G. Herzberg, Atomic Spectra and Atomic Structure. Dover, New York, 1944.

[7] J. C. Slater, Phys. Rev. 36, 57 (1930).

[8] E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).

[9] C. L. Pekeris, Phys. Rev. 115, 1216 (1959).

[10] P. Roman, Origins of nonrelativistic spin, Physics Today, Jan. 1985, p.126.




