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•	 The Koopmans theorem goes at best with chemical harness or 
aromaticity evaluation by means of LUMO-HOMO gaps when they 
manifested surprisingly the same for superior orders of IPs-EAs, this 
way confirming the previous point.

Application on a paradigmatic set of mono and double benzoic rings 
molecules supported these conclusions, yet leaving enough space for 
further molecular set extensions and computational various frameworks 
comparison.

This may lead with the fruitful result according which the Koopmans 
theorem works better when superior HOMO-LUMO frozen spin-orbitals 
are considered, probably due to compensating correlating effects such 
extension implies, see the last section’ analytical discussion. In any case, 
the present molecular illustration of Koopmans’ approximations to chem-
ical harness computation clearly shows that, at least for organic aromatic 
molecules, it works better for superior orders of “freezing” spin-orbitals 
and is not limitative to the first valence orbitals, as would be the common 
belief. Moreover, it was also clear the Koopmans theorem finely accords 
also with more complex ponder of its superior order orbitals in chemi-
cal hardness expansions Eq. (4.326), when subtle effects in lone pair-
ing electrons (since remained orbital is frozen upon successive electronic 
attachment/removals on/from it) or chemical bonding pair of electrons 
influence the aromatic ring core towards increasing its shielding and the 
overall molecular reactivity resistance. All these conceptual and compu-
tational results should be further extended and tested on increased number 
of molecules, enlarging their variety too, as well as by considering more 
refined quantum computational frameworks as the Density Functional 
Theory and (Hartree-Fock) ab initio schemes are currently compared and 
discussed for various exchange-correlation and parameterization limits 
and refutations.

4.6  DENSITY FUNCTIONAL THEORY: OBSERVABLE QUANTUM 
CHEMISTRY

The main weakness of the Hartree-Fock method, namely the lack in cor-
relation energy, is ingeniously restored by the Density Functional method 
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through introducing of the so-called effective one-electron exchange-
correlation potential, yet with the price of not knowing its analytical form. 
However, the working equations have the simplicity of the HF ones, while 
replacing the exchange term in Eq. (4.281) by the exchange-correlation 
(“XC”) contribution; there resulted the (general) unrestricted matrix form 
of the Kohn-Sham equations (Kohn & Sham, 1965):

	 F H P FT XC
µν µν λσ

λσ
µνµν λσ↑ ↑ ↑= + ( ) +∑ 	 (4.370)

	 F H P FT XC
µν µν λσ

λσ
µνµν λσ↓ ↓ ↓= + ( ) +∑ 	 (4.371)

	 P P P PT ≡ = +↑+↓ ↑ ↓ 	 (4.372)

in a similar fashion with the Pople-Nesbet equations of Hartree-Fock 
theory. The restricted (closed-shell) variant is resembled by the density 
constraint:

	 ρ ρ↑ ↓= 	 (4.373)

in which case the Roothaan analogous equations (for exchange-correlation 
potential) are obtained.

Either Eq. (4.370) or (4.371) fulfills the general matrix equation of type 
(4.279) for the energy solution:

	 E P H P P EXC= + ( ) +∑ ∑µν µν
µν

µν λσ
µνλσ

µν λσ
1
2

	 (4.374)

that can be actually regarded as the solution of the Kohn-Sham equations 
themselves. The appeared exchange-correlation energy EXC may be at its 
turn conveniently expressed through the energy density (per unit volume) 
by the integral formulation:

	 E E f dXC XC=   = ( )↑ ↓ ↑ ↓∫ρ ρ ρ ρ τ, , 	 (4.375)
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once the Fock elements of exchange-correlation are recognized to be of 
density gradient form (Johnson et al., 1994):

	 F f dXC
µν µ ν

ρ
φ φ τ↑ ↓( )

↑ ↓( )=
∂

∂
∫ 	 (4.376)

The quest for various approximations for the exchange-correlation energy 
density f(ρ) had spanned the last decades in quantum chemistry, and will 
be in the next reviewed (Putz, 2008). Here we will thus present the “red 
line” of its implementation as will be further used for the current aromatic-
ity applications.

4.6.1  HOHENBERG-KOHN THEOREMS

Unlike the Hartree-Fock method, a completely different approach was 
invented to overcome from a single shoot both the exchange and correla-
tion terms to the total electronic energy. That was possible, however with 
the price of revisiting the wave function concept, through contracting it 
into the electronic density:

	 ρ χσ

σ α β

( ) ( )
,

r n ri
i

i= ∑ ∑
=

2
	 (4.377)

written in general terms of the fractional occupancy numbers ni ∈[ , ]0 1  so 
that (Nagy, 1998)

	 N r dr ni
i

[ ] ( )ρ ρ= =∫ ∑ 	 (4.378)

Worth noting that by introducing of the fractional occupation numbers 
both the concepts of one-orbitals as well as exact N-one-orbitals become 
generalized to fractionally occupied orbitals and to an arbitrary number of 
orbitals, hereafter called as Kohn-Sham orbitals. This way the distinction 
respecting the Hartree-Fock approach is made in clear.

The first Hohenberg-Kohn (HK1) theorem gives space to the concept 
of electronic density of the system ρ(r) in terms of the extensive relation 
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with the N electrons from the system that it characterizes (Bamzai & Deb, 
1981):

	 ρ( )r d Nr∫ = 	 (4.379)

The relation (4.379) as much simple it could appears stands as the decisive 
passage from the eigen-wave function level to the level of total electronic 
density (Parr & Young, 1989; Putz, 2003):

	 ρ( ) ( , ,..., ) ( , ,..., ) ...*r r r r r r r r r= ∫N d dN N NΨ Ψ2 2 2 	 (4.380)

Firstly, Eq. (4.380) satisfies Eq. (4.379); this can be used also as simple 
immediate proof of the relation (4.379) itself. Then, the dependency from 
the 3N-dimensions of configuration space was reduced at 3 coordinates in 
the real space, physically measurable.

However, still remains the question: what represents the electronic 
density of Eq. (4.380)? Definitely, it neither represents the electronic 
density in the configuration space nor the density of a single electron, 
since the N-electronic dependency as multiplication factor of the mul-
tiple integral in Eq. (4.380). What remains is that ρ(r) is simple the elec-
tronic density (of the whole concerned system) in “r” space point. Such 
simplified interpretation, apparently classics, preserves its quantum roots 
through the averaging (integral) over the many-electronic eigenfunction 
Ψ( ,..., )r r1 N  in Eq. (4.380). Alternatively, the explicit non-dependency of 
density on the wave function is also possible within the quantum statis-
tical approach where the relation with partition function of the system 
(the global measure of the distribution of energetic states of a system) is 
mainly considered.

The major consequence of this theorem consists in defining of the 
total energy of a system as a function of the electronic density function 
in what is known as the density functional (Parr & Young, 1989; Putz, 
2003):

	 E F CHK A[ ] [ ] [ ]ρ ρ ρ= + 	 (4.381)
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from where the name of the theory. The terms of energy decomposi-
tion in (4.381) are identified as: the Hohenberg-Kohn density functional 
(Hohenberg & Kohn, 1964)

	 F T VHK ee[ ] [ ] [ ]ρ ρ ρ= + 	 (4.382)

viewed as the summed electronic kinetic T[ ]ρ  and electronic repulsion
Vee[ ]ρ , and the so-called chemical action term (Putz, 2007a):

	 C V dA[ ] ( ) ( )ρ ρ= ∫ r r r 	 (4.383)

being the only explicit functional of total energy.
Although not entirely known the HK functional has a remarkably prop-

erty: it is universally, in a sense that both the kinetic and inter-electronic 
repulsion are independent of the concerned system. The consequence 
of such universal nature offers the possibility that once it is exactly or 
approximately knew the HK functional for a given external potential V(r) 
remain valuable for any other type of potential V’(r) applied on the con-
cerned many-electronic system. Let’s note the fact that V(r) should be not 
reduced only to the Coulombic type of potentials but is carrying the role of 
the generic potential applied, that could beg of either an electric, magnetic, 
nuclear, or even electronic nature as far it is external to the system fixed by 
the N electrons in the investigated system.

Once “in game” the external applied potential provides the second 
Hohenberg-Kohn (HK2) theorem. In short, HK2 theorem says that “the 
external applied potential is determined up to an additive constant by the 
electronic density of the N-electronic system ground state”. In mathemat-
ical terms, the theorem assures the validity of the variational principle 
applied to the density functional (4.381) relation, i.e., (Ernzerhof, 1994)

	 E E E[ ] [ ] [ ]ρ ρ δ ρ≥ ⇔ = 0 	 (4.384)

for every electronic test density ρ around the real density ρ of the ground 
state.

The proof of variational principle in Eq. (4.384), or, in other words, the 
one-to-one correspondence between the applied potential and the ground 
state electronic density, employs the reduction ad absurdum procedure. 
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That is to assume that the ground state electronic density ρ(r) corresponds 
to two external potentials (V1, V2) fixing two associate Hamiltonians 
(H1, H2) to which two eigen-total energy (E1, E2) and two eigen-wave func-
tions (Ψ1, Ψ2) are allowed. Now, if eigen-function Ψ1 is considered as the 
true one for the ground state the variational principle (4.384) will cast as 
the inequality:

E H d H d H H H1 1 1 1 2 1 2 2 2 1 2 2[ ] * * *ρ τ τ= < = + −













∧ ∧ ∧ ∧ ∧

∫ ∫Ψ Ψ Ψ Ψ Ψ Ψ∫∫ dτ

		  (4.385)

which is further reduced, on universality reasons of the HK functional in 
(4.381), to the form:

	 E E V V d1 2 1 2[ ] [ ] ( ) ( ) ( )ρ ρ ρ< + −[ ]∫ r r r r 	 (4.386)

On another way, if the eigen-function Ψ2 is assumed as being the one true 
ground state wave-function, the analogue inequality springs out as:

	 E E V V d2 1 2 1[ ] [ ] ( ) ( ) ( )ρ ρ ρ< + −[ ]∫ r r r r 	 (4.387)

Taken together relations (4.386) and (4.387) generate, by direct summa-
tion, the evidence of the contradiction:

	 E E E E1 2 1 2[ ] [ ] [ ] [ ]ρ ρ ρ ρ+ < + 	 (4.388)

The removal of such contradiction could be done in a single way, namely, 
by abolishing, in a reverse phenomenologically order, the fact that two 
eigen-functions, two Hamiltonians and respectively, two external potential 
exist for characterizing the same ground state of a given electronic system. 
With this statement the HK2 theorem is formally proofed.

Yet, there appears the so-called V-representability problem signaling 
the impossibility of an a priori selection of the external potentials types 
that are in bi-univocal relation with ground state of an electronic system 
(Chen & Stott, 1991a,b; Kryachko & Ludena, 1991a,b). The problem 
was revealed as very difficult at mathematical level due to the equivocal 
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potential intrinsic behavior that is neither of universal nor of referential 
independent value. Fortunately, such principal limitation does not affect 
the general validity of the variational principle (4.384) regarding the selec-
tion of the energy of ground state level from a collection of states with 
different associated external potentials.

That because, the problem of V-representability can be circum-
vented by the so-called N-contingency features of ground state elec-
tronic density assuring that, aside of the N – integrability condition 
(4.379), the candidate ground state densities should fulfill the positivity 
condition (an electronic density could not be negative) (Kryachko & 
Ludena, 1991a,b):

	 ρ( ) ,r r≥ ∀ ∈ℜ0 	 (4.389)

as well as the non-divergent integrability condition on the real domain 
(in relation with the fact that the kinetic energy of an electronic system 
could not be infinite – since the light velocity restriction):

	 ∇ < ∞
ℜ
∫ ρ( ) /r r1 2 2

d 	 (4.390)

Both Eqs. (4.389) and (4.390) conditions are easy accomplished by every 
reasonable density, allowing the employment of the variational principle 
(4.384) in two steps, according to the so-called Levy-Lieb double mini-
mization algorithm (Levy & Perdew, 1985): one regarding the intrinsic 
minimization procedure of the energetic terms respecting all possible 
eigen-functions folding a trial electronic density followed by the external 
minimization over all possible trial electronic densities yielding the cor-
rect ground state (GS) energy density functional

	

E T V V d

T V

GS ee

ee

= + +( )





= +

→

→

∫min min ( )

min min ( )

*

*

ρ ρ

ρ ρ

τ
Ψ

Ψ

Ψ Ψ

Ψ Ψdd V d

F C EHK A

τ ρ

ρ ρ ρ
ρ ρ

∫ ∫( ) +





= +( ) = ( )

( ) ( )

min [ ] [ ] min [ ]

r r r

	 (4.391)
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One of the most important consequences of the HK2 conveys the rewrit-
ing of the variational principle (4.384) in the light of above N-contingency 
conditions of the trial densities as the working Euler type equation:

	 δ ρ µ ρ{ [ ] [ ]}E N− = 0 	 (4.392)

from where, there follows the Lagrange multiplication factor with the 
functional definition:

	 µ
δ ρ

δρ ρ ρ

=










=

E

V

[ ]

( )

	 (4.393)

this way introducing the chemical potential as the fundamental quantity 
of the theory. At this point, the whole chemistry can spring out since iden-
tifying the electronic systems electronegativity with the negative of the 
density functional chemical potential (Parr & Young, 1989):

	 χ µ= − 	 (4.394)

making thus the DFT approach compatible with Hartree-Fock-Koopmans 
previous formulation of electronagivity for frontier orbital energies, see 
Eq. (4.352).

However, the Hohenberg-Kohn theorems give new conceptual quan-
tum tools for physico-chemical characterization of an electronic sample 
by means of electronic density and its functionals, the total energy and 
chemical potential (electronegativity). Such density functional premises 
are in next analyzed towards elucidating of the quantum nature of the 
chemical bond as driven by chemical reactivity (Putz, 2007b).

4.6.2  OPTIMIZED ENERGY-ELECTRONEGATIVITY 
CONNECTION

Back from Paris, in the winter of 1964, Kohn met at the San Diego 
University of California his new post-doc Lu J. Sham with who propose to 
extract from HK1 & 2 theorems the equation of total energy of the ground 
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state. In fact, they propose themselves to find the correspondent of the 
stationary eigen-equation of Schrödinger type, employing the relationship 
between the electronic density and the wave function.

Their basic idea consists in assuming a so-called orbital basic set for 
the N-electronic system by replacing the integration in the relation (4.380) 
with summation over the virtual uni-electronic orbitals ϕi i N, ,=1 , in 
accordance with Pauli principle, assuring therefore the HK1 frame with 
maximal spin/orbital occupancy (Janak, 1978):

	 ρ( ) ( ) , ,r r= ≤ ≤ =∑ ∑n n n Ni i
i

N

i i
i

ϕ 2 0 1 	 (4.395)

Then, the trial total eigen-energy may be rewritten as density functional 
of Eq. (4.381) nature expanded in the original form (Moscardo & San-
Fabian, 1991; Neal, 1998):

E F C
T V C
T J T T

HK A

ee A

s s

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] ( [ ] [ ]

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ

= +
= + +

= + + − )) ( [ ] [ ]) [ ]

( ) ( )*

+ −{ } +

= − ∇





+∫∑

V J C

n d

ee A

i i
i

N

i

ρ ρ ρ

ϕ ϕr r r1
2

1
2

2 ρρ ρ
ρ

ρ

( ) ( ) [ ]

( ) ( )

r r r r

r r r

1 2

12
1 2r

d d E

V d

xc∫∫

∫

+

+

		  (4.396)

where, the contribution of the referential uniform kinetic energy 
contribution

	 T n ds i i
i

N

i[ ] ( ) ( )*ρ = − ∇



∫∑ ϕ ϕr r r1

2
2 	 (4.397)

with the inferior index “s” referring to the “spherical” or homogeneous 
attribute together with the classical energy of Coulombic inter-electronic 
repulsion

	 J
r

d d[ ] ( ) ( )
ρ

ρ ρ
= ∫∫

1
2

1 2

12
1 2

r r r r 	 (4.398)
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were used as the analytical vehicles to elegantly produce the exchange-
correlation energy Exc containing exchange ( [ ] [ ])V Jee ρ ρ−  and correlation 
( [ ] [ ])T Tsρ ρ−  heuristically introduced terms as the quantum effects of spin 
anti-symmetry over the classical interelectronic potential and of corrected 
homogeneous electronic movement, respectively.

Next, the trial density functional energy (4.396) will be optimized in 
the light of variational principle (4.392) as prescribed by the HK2 theo-
rem. The combined result of the HK theorems will eventually furnish the 
new quantum energy expression of multi-electronic systems beyond the 
exponential wall of the wave function.

An instructive method for deriving such equation assume the same 
types of orbitals for the density expansion (4.395),

	 ρ( ) ( ) ( )*r r r= Nϕ ϕ 	 (4.399)

that, without diminishing the general validity of the results, since preserv-
ing the N-electronic character of the system, highly simplifies the analyti-
cal discourse.

Actually, with the trial density (4.399) replaced throughout the energy 
expression in Eq. (4.396) has to undergo the minimization procedure 
(4.392) with the practical equivalent integral variant:

	
δ ρ µ ρ

δ
δ

E N
d

[ ] [ ]
*

*−( )
=∫ ϕ

ϕ r 0 	 (4.400)

Note that, in fact, we chose the variation in the conjugated uni-orbital 
ϕ* ( )r  in (4.400) providing from (4.399) the useful differential link:

	 δρ δ δ
δρ

( ) ( ) ( ) ( ) ( )
( )

* *r r r r r
r

= ⇒ =N Nϕ ϕ ϕ ϕ
1 	 (4.401)

Now, unfolding the Eq. (4.400) with the help of relations (4.396) and 
(4.399), together with fundamental density functional prescription (4.379), 
one firstly gets (Putz & Chiriac, 2008):

	 δ
δφ

ρ ρ

µ
*

*

*( )

( ) ( ) [ ] [ ]

( ) ( ) ( )r

r r r

r r r r

− ∇ + +

+ −

∫
∫

N d J E

N V d N

xc2
2ϕ ϕ

ϕ ϕ ϕ** ( ) ( )r r rϕ∫

















=
d

0 	 (4.402)
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By performing the required partial functional derivations respecting the 
uni-orbital ϕ* ( )r  and by taking account of the equivalence (4.401) in deriv-
atives relating J[ ]ρ  and Exc[ ]ρ  terms, Eq. (4.402) takes the further form:

− ∇ + + + − =
N N J N E NV Nxc

2
02ϕ ϕ ϕ ϕ ϕ( ) ( ) [ ] ( ) ( ) ( ) ( )r r r r r rδ ρ

δρ
δ
δρ

µ

		  (4.403)

After immediate suppressing of the N factor in all the terms and by consid-
ering the exchange-correlation potential with the formal definition:

	 V E
rxc

xc

V

( ) [ ]
( ) ( )

r
r

=










δ ρ
δρ

	 (4.404)

Equation (4.403) simplifies as (Flores & Keller, 1992; Keller, 1986):

	 − ∇ + +
−

+






















=∫
1
2

2 2

2
2V d Vxc( ) ( ) ( ) ( ) ( )r r

r r
r r r rρ

µϕ ϕ 	 (4.405)

Moreover, once introducing the so-called effective potential:

	 V V d Veff xc( ) ( ) ( ) ( )r r r
r r

r r= +
−

+∫
ρ 2

2
2 	 (4.406)

the resulted equation recovers the traditional Schrödinger shape:

	 − ∇ +





=
1
2

2 Veff ϕ ϕ( ) ( )r rµ 	 (4.407)

The result (4.407) is fundamental and equally subtle. Firstly, it was proved 
that the joined Hohenberg-Kohn theorems are compatible with consecrated 
quantum mechanical postulates, however, still offering a generalized view 
of the quantum nature of electronic structures, albeit the electronic density 
was assumed as the foreground reality. In these conditions, the meaning 
of functions ϕ( )r  is now unambiguously producing the analytical pas-
sage from configuration (3N-D) to real (3D) space for the whole system 
under consideration. Nevertheless, the debate may still remain because 
once equation (4.407) is solved the basic functions ϕ( )r  generating the 



Quantum Mechanics for Quantum Chemistry	 479

electronic density (4.399) and not necessarily the eigen-functions of the 
original system due to the practical approximations of the exchange and 
correlation terms appearing in the effective potential (4.406). This is why 
the functions ϕ( )r  are used to be called as Kohn-Sham (KS) orbitals; they 
provide the orbital set solutions of the associate KS equations (Kohn & 
Sham, 1965):

	 − ∇ +





= =
1
2

12 V i Neff i i iϕ ϕ( ) ( ) , ,r rµ 	 (4.408)

once one reconsiders electronic density (4.399) back with general case 
(4.395). Yet, Eq. (4.408), apart of delivering the KS wave-functions ϕi ( )r , 
associate with another famous physico-chemical figure, the orbital chemi-
cal potential µi, which in any moment can be seen as the negative of the 
orbital electronegativities on the base of the relation (4.394). Going now to 
a summative characterization of the above optimization procedure worth 
observing that the N-electronic in an arbitrary external V-potential prob-
lem is conceptual-computationally solved by means of the following self-
consistent algorithm:

1.	 It starts with a trial electronic density (4.395) satisfying the 
N-contingency conditions (4.389) and (4.390);

2.	 With trial density the effective potential (4.406) containing 
exchange and correlation is calculated;

3.	 With computed Veff  the Eq. (4.408) are solved for ϕi i N( ), ,r =1 ;
4.	 With the set of functions ϕi i N( )

,
r{ } =1

 the new density (4.395) is 
recalculated;

5.	 The procedure is repeated until the difference between two con-
secutive densities approaches zero;

6.	 Once the last condition is achieved one retains the last set 
ϕi i i i N( ),

,
r µ χ= −{ } =1

;
7.	 The electronegativity orbital observed contributions are summed 

up from Eq. (4.408) with the expression:

− = − ∇ +





= +∑ ∫∑χ ρ ρi
i

N

i i eff i
i

N

s effn V d T Vϕ ϕ* ( ) ( ) ( ) [ ] (r r r r1
2

2 rr r)∫ d

		  (4.409)
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8.	 Replacing in Eq. (4.409) the uniform kinetic energy, Ts[ ]ρ  from 
the general relation (4.396) the density functional of the total 
energy for the N-electronic system will take the final figure (Putz, 
2008):

E d d E V di
i

N

xc xc[ ] ( ) ( ) [ ] ( ) ( )ρ χ
ρ ρ

ρ ρ= − − + −{ }∑ ∫∫ ∫
1
2

1 2

12
1 2

r r
r

r r r r r

		  (4.410)

showing that the optimized many-electronic ground state energy is directly 
related with global or summed over observed or averaged or expected 
orbital electronegativities. One can observe from Eq. (4.410) that even in 
the most optimistic case when the last two terms are hopefully canceling 
each other there still remains a (classical) correction to be added on global 
electronegativity in total energy. Or, in other terms, electronegativity alone 
is not enough to better describe the total energy of a many-electronic sys-
tem, while its correction can be modeled in a global (almost classical) way. 
Such considerations stressed upon the accepted semiclassical behavior of 
the chemical systems, at the edge between the full quantum and classical 
treatments.

However, analytical expressing the total energy requires the use of 
suitable approximations, whereas for chemical interpretation of bonding 
the electronic localization information extracted from energy is compul-
sory. This subject is in next focused followed by a review of the popular 
energetic density functionals and approximations.

4.6.3  POPULAR ENERGETIC DENSITY FUNCTIONALS

Since the terms of total energy are involved in bonding and reactivity 
states of many-electronic systems, i.e., the kinetic energetic terms in ELF 
topological analysis or the exchange and correlation density functionals in 
chemical reactivity in relation with either localization and chemical poten-
tial or electronegativity, worth presenting various schemes of quantifica-
tion and approximation of these functionals for better understanding their 
role in chemical structure and dynamics.
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4.6.3.1  Density Functionals of Kinetic Energy

When the electronic density is seen as the diagonal element ρ ρ( ) ( , )r r r1 1 1=  
the kinetic energy may be generally expressed from the Hartree-Fock 
model, through employing the single determinant ρ( , ' )r r1 1 , as the quan-
tity (Lee & Parr, 1987):

	 T d[ ] ( , ' )' '
ρ ρ= − ∇  =∫

1
2 1

1 1

2
1 1 1r r r

r r r 	 (4.411)

it may eventually be further written by means of the thermodynamical (or 
statistical) density functional:

	 T k T d dBβ ρ ρ
β

= =∫ ∫
3
2

3
2

1( ) ( ) ( )
( )

r r r r
r

r 	 (4.412)

that supports various specializations depending on the statistical factor 
particularization β.

For instance, in LDA approximation, the temperature at a point is 
assumed as a function of the density in that point, β β ρ( ) ( ( ))r r= ; this 
may be easily reached out by employing the scaling transformation to be 
(Ou-Yang & Levy, 1990)

	 ρ λ ρ λ ρ λ ρ λλ λ( ) ( ) [ ] [ ],r r= ⇒ = =3 2T T ct 	 (4.413)

providing that

	 β ρ( ) ( )/r r= −3
2

2 3C 	 (4.414)

a result that helps in recovering the traditional (Thomas-Fermi) energetic 
kinetic density functional form

	 T C d[ ] ( )/ρ ρ= ∫ 5 3 r r 	 (4.415)

while the indeterminacy remained is smeared out in different approxima-
tion frames in which also the exchange energy is evaluated. Note that the 
kinetic energy is generally foreseen as having an intimate relation with 
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the exchange energy since both are expressed in Hartree-Fock model as 
determinantal values of ρ( , ' )r r1 1 , see below.

Actually, the different LDA particular cases are derived by equating 
the total number of particle N with various realization of the integral

	 N d d= ∫∫
1
2 1 1

2
1 1ρ( , ' ) 'r r r r 	 (4.416)

by rewriting it within the inter-particle coordinates frame:

	 r r r r r= + = −0 5 1 1 1 1. ( '), 's 	 (4.417)

as:

	 N d d= + −∫∫
1
2

2 2 2ρ( / , / )r r rs s s 	 (4.418)

followed by spherical averaged expression:

	 N s d s ds= ∫∫2 2 2π ρ ( ) ( , )r r rΓ 	 (4.419)

with

	 Γ( , )
( )

...r
r

s s
= − +1

β
	 (4.420)

The option in choosing the Γ( , )r s  series (4.420) so that to converge in 
the sense of charge particle integral (4.419) fixes the possible cases to be 
considered (Lee & Parr, 1987):

1.	 the Gaussian resummation uses:

	 Γ Γ( , ) ( , ) exp
( )

r r
r

s s s
G≅ = −











2

β
	 (4.421)

2.	 the trigonometric (uniform gas) approximation looks like:

	 Γ Γ( , ) ( , )
sin cos

,
( )

r r
r

s s
t t t
t

t sT≅ =
−( )

=9 5
2

6 β
	 (4.422)
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In each of (4.421) and (4.422) cases the LDA-β function (4.414) is firstly 
replaced; then, the particle integral (4.419) is solved to give the constant 
C and then the respective kinetic energy density functional of Eq. (4.415) 
type is delivered; the results are (Lee & Parr, 1987):

1.	 in Gaussian resummation:

	 T dG
LDA = ∫

3
25 3

5 3π
ρ/

/ ( )r r 	 (4.423)

2.	 whereas in trigonometric approximation

	 T dTF
LDA = ( ) ∫

3
10

3 2 2 3 5 3π ρ
/ / ( )r r 	 (4.424)

one arrives to the Thomas-Fermi original density functional 
formulation.

Next on, one will consider the non-local functionals; this can be 
achieved through the gradient expansion in the case of slowly varying 
densities – that is assuming the expansion (Murphy, 1981):

	

T d

d

d

m m
m

m
m

= + 

= + 

=

↑ ↓

↑ ↓
=

∞

∫

∑∫

r

r

r

τ ρ τ ρ

τ ρ τ ρ

τ ρ

( ) ( )

( ) ( )

( )

2 2
0

2
==

∞

∑∫

∫=
0

drτ ρ( ) 	 (4.425)

The first two terms of the series respectively covers: the Thomas Fermi 
typical functional for the homogeneous gas

	 τ ρ π ρ0
2 2 3 5 33

10
6( )

/ /= ( ) 	 (4.426)

and the Weizsäcker related first gradient correction:

	 τ ρ τ ρ
ρ
ρ2

2
1
9

1
72

( ) ( )= =
∇

W 	 (4.427)
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They both correctly behave in asymptotic limits:

τ ρ

τ ρ τ ρ ρ

τ ρ τ ρ
ρ
ρ

( )
( ) ( ) ... ( )

( ) ( )
=

= ∇ <<

= =
∇

0 2

2

2

9 1
8

far from nucleus

W .... ( )∇ >>







 ρ close to nucleus

		  (4.428)

However, an interesting resummation of the kinetic density functional 
gradient expansion series (4.425) may be formulated in terms of the Padé-
approximant model (DePristo & Kress, 1987):

	 τ ρ τ ρ( ) ( ) ( ),= 0 4 3P x 	 (4.429)

with

	 P x x a x a x b x
x b x b x4 3
2

2
3

3
3

4

2
2

3
3

1 0 95 9
1 0 05, ( ) .

.
=

+ + + +
− + +

	 (4.430)

and where the x-variable is given by

	 x = =
( )

∇τ ρ
τ ρ π

ρ
ρ

2

0
2 2 3

2

8 3

5
108

1

6

( )
( ) / / 	 (4.431)

while the parameters a2, a3, b2, and b3 are determined by fitting them to 
reproduce Hartree-Fock kinetic energies of He, Ne, Ar, and Kr atoms, 
respectively (Liberman et al., 1994). Note that Padé function (4.430) may 
be regarded as a sort of generalized electronic localization function (ELF) 
susceptible to be further used in bonding characterizations.

4.6.3.2  Density Functionals of Exchange Energy

Starting from the Hartree-Fock framework of exchange energy definition 
in terms of density matrix (Levy et al., 1996),
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	 K d d[ ]
( , ' )

'
'ρ

ρ
= −

−∫∫
1
4

1 1
2

1 1
1 1

r r
r r

r r 	 (4.432)

within the same consideration as before, we get that the spherical averaged 
exchange density functional

	 K s d sds= ∫∫π ρ 2 ( ) ( , )r r rΓ 	 (4.433)

takes the particular forms (Lee & Parr, 1987):

1.	 in Gaussian resummation:

	 K dG
LDA = − ∫

1
21 3

4 3
/

/ ( )ρ r r 	 (4.434)

2.	 and in trigonometric approximation (recovering the Dirac formula):

	 K dD
LDA = − 






 ∫

3
4

3 1 3
4 3

π
ρ

/
/ ( )r r 	 (4.435)

Alternatively, by paralleling the kinetic density functional previous 
developments the gradient expansion for the exchange energy may 
be regarded as the density dependent series (Cedillo et al., 1988):

	

K K

d k

d k

n
n

n
n

=

=

=

=

∞

=

∞

∑

∑∫

∫

2
0

2
0

( )

( )

( )

ρ

ρ

ρ

r

r 	 (4.436)

while the first term reproduces the Dirac LDA term (Perdew & 
Yue, 1986; Manoli & Whitehead, 1988):

	 k0

1 3
4 33

2
3

4
( )

/
/ρ

π
ρ= − 






 	 (4.437)
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and the second term contains the density gradient correction, with 
the Becke proposed approximation (Becke, 1986):

	 k b

d
a2

2

4 3

2

8 31

( )
/

/

ρ

ρ
ρ

ρ
ρ

= −

∇

+
∇











	 (4.438)

where the parameters b and d are determined by fitting the k0+k2 
exchange energy to reproduce Hartree-Fock counterpart energy of 
He, Ne, Ar, and Kr atoms, and where for the a exponent either 1.0 
or 4/5 value furnishes excellent results. However, worth noting that 
when analyzing the asymptotic exchange energy behavior, we get 
in small gradient limit (Becke, 1986):

	 k k( ) ( ) / /ρ ρ
π π

ρ
ρ

ρ∇ << → −
( )

∇
0 2 1 3

2

4 3

7

432 6
	 (4.439)

whereas the adequate large-gradient limit is obtained by consider-
ing an arbitrary damping function as multiplying the short-range 
behavior of the exchange-hole density, with the result:

	 k c( ) / /ρ ρ ρρ∇ >> → ∇4 5 2 5 	 (4.440)

where the constant c depends of the damping function choice.
Next, the Padé-resummation model of the exchange energy prescribes 

the compact form (Cedillo et al., 1988):

	 k k
P x

( ) ( )
( ),

ρ
ρ

=
10
9

0

4 3

	 (4.441)

with the same Padé-function (4.430) as previously involved when dealing 
with the kinetic functional resummation. Note that when x=0, one directly 
obtains the Ghosh-Parr functional (Ghosh & Parr, 1986):

	 k k( ) ( )ρ ρ=
10
9 0 	 (4.442)
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Moreover, the asymptotic behavior of Padé exchange functional (4.441) 
leaves with the convergent limits:

k

k

x SM
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/
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π π

ρ
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
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12
2

2π
ρ
ρ

		  (4.443)

Once again, note that when particularizing small or large gradients and 
fixing asymptotic long or short range behavior, we are discovering the 
various cases of bonding modeled by the electronic localization recipe as 
provided by electronic localization function limits, see Volume II of the 
present five-volumes set (Putz, 2016b).

Another interesting approach of exchange energy in the gradient 
expansion framework was given by Bartolotti through the two-component 
density functional (Bartolotti, 1982):

	 K C N d D N d[ ] ( ) ( ) ( )/
/ρ ρ

ρ
ρ

= +
∇

∫ ∫r r r r4 3 2
2

2 3 	 (4.444)

where the N-dependency is assumed to behave like:

	 C N C C
N

D N D
N

( ) , ( )/ /= + =1
2

2 3
2

2 3 	 (4.445)

while the introduced parameters C1, C2, and D2 were fond with the exact 
values (Perdew et al., 1992; Wang et al., 1990; Alonso & Girifalco, 1978):

	 C C D1
1 3

2
1 3

2

1 3

2

1 33
4

3
4

1 3
729

= − = − − 



















=π π
π

π/ /
/ /

, , 	 (4.446)

Worth observing that the exchange Bartolotti functional (4.444) has some 
important phenomenological features: it scales like potential energy, 



488	 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

fulfills the non-locality behavior through the powers of the electron and 
powers of the gradient of the density, while the atomic cusp condition is 
preserved (Levy & Gorling, 1996).

However, density functional exchange-energy approximation with cor-
rect asymptotic (long range) behavior, i.e., satisfying the limits for the 
density

	 lim exp
r

a r
→∞

= −( )ρσ σ 	 (4.447)

and for the Coulomb potential of the exchange charge, or Fermi hole den-
sity at the reference point r

	 lim , ( ), ( )...
r XU r

or or spin states
→∞

= − = ↑ ↓σ σ α β
1 	 (4.448)

in the total exchange energy

	 K U dX[ ]ρ ρσ
σ

σ

= ∫∑1
2

r 	 (4.449)

was given by Becke via employing the so-called semiempirical (SE) mod-
ified gradient-corrected functional (Becke, 1986):

K K x
x

d K d k xSE = −
+

= =
∇

∫∑ ∫0
4 3

2

2 0 01
β ρ

γ
ρ

ρ
σ

σ

σσ
σ

σ/ ( )
( )

, [ ( )], ( )r
r

r r rr
(( )
( )/

r
rρσ

4 3

		  (4.450)

to the working single-parameter dependent one (Becke, 1988):

	 K K x
x x

dB88
0

4 3
2

11 6
= −

+ −∫∑β ρ
βσ

σ

σ σσ

/ ( ) ( )
( )sinh ( )

r r
r r

r 	 (4.451)

where the value β = 0 0042. [ . .]a u  was found as the best fit among the noble 
gases (He to Rn atoms) exchange energies; the constant as  is related to the 
ionization potential of the system.

Still, having different exchange approximation energetic functionals as 
possible worth explaining from where such ambiguity eventually comes. 
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To clarify this, it helps in rewriting the starting exchange energy (4.432) 
under the formally exact form (Taut, 1996):

	 K k g x d[ ] ( ) [ ( )] [ ( )]ρ ρ ρσ σ σ
σ

= ∫∑ r r r r 	 (4.452)

where the typical components are identified as:

	 k A AX X[ ] ,/
/

ρ ρ
π

= − = 







1 3
1 33

2
3

4
	 (4.453)

while the gradient containing correction g(x) is to be determined.
Firstly, one can notice that a sufficiency condition for the two exchange 

integrals (4.449) and (4.452) to be equal is that their integrands, or the 
exchange potentials, to be equal; this provides the leading gradient 
correction:

	 g x U x
k x

X
0

1
2

( ) ( ( ))
[ ( ( ))]

=
r
rρ

	 (4.454)

with r(x) following from x(r) by (not unique) inversion.
Unfortunately, the above “integrity” condition for exchange inte-

grals to be equal is not also necessary, since any additional gradient 
correction

	 g x g x g x( ) ( ) ( )= +0 ∆ 	 (4.455)

fulfills the same constraint if it is chosen so that

	 ρ 4 3 0/ ( ) ( ( ))r r r∫ =∆g x d 	 (4.456)

or, with the general form:

	 ∆g x f x
f x d

d
( ) ( )

( ) ( ( ))

( )

/

/
= − ∫

∫
ρ

ρ

4 3

4 3

r r r

r r
	 (4.457)

being f(x) an arbitrary function.
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Nonetheless, if, for instance, the function f(x) is specialized so that

	 f x g x( ) ( )= − 0 	 (4.458)

the gradient correcting function (4.455) becomes:

	 g x
A

U d

dX

X
X( )

( ) ( )

( )/
= − ≡∫

∫
1

2 4 3

ρ

ρ
α

r r r

r r
	 (4.459)

recovering the Slater’s famous Xα method for exchange energy evaluations 
(Slater, 1951; Slater & Johnson, 1972):

	 K A dX X[ ] ( )/ρ α ρ= − ∫ 4 3 r r 	 (4.460)

Nevertheless, the different values of the multiplication factor αX in 
Eq. (4.460) can explain the various forms of exchange energy coef-
ficients and forms above. Moreover, following this conceptual line the 
above Becke’88 functional (4.451) can be further rearranged in a so-called 
Xα-Becke88 form (Lee & Zhou, 1991):

	 K x
x x

dXB
XB

XB

88 4 3 1 3
2

12
1 6

= +
+




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


−α ρ

βσ
σ

σ σ

/ /( ) ( )
( )sinh ( )

r r
r r

r∫∫∑
σ

	(4.461)

where the parameters αXB and βXB are to be determined, as usually, through-
out atomic fitting; it may lead with a new workable valuable density func-
tional in exchange family.

4.6.3.3  Density Functionals of Correlation Energy

The first and immediate definition of energy correlation may be given by 
the difference between the exact and Hartree-Fock (HF) total energy of a 
poly-electronic system (Senatore & March, 1994):

	 E E Ec HF[ ] [ ] [ ]ρ ρ ρ= − 	 (4.462)

Instead, in density functional theory the correlation energy can be seen 
as the gain of the kinetic and electron repulsion energy between the full 
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interacting (λ =1) and non-interacting (λ = 0) states of the electronic 
systems (Liu et al., 1999):

	 E T V T Vc ee ee
λ λ λ λ λρ ψ λ ψ ψ λ ψ[ ] = +






 − +








∧ ∧
=

∧ ∧
=0 0 	 (4.463)

In this context, taking the variation of the correlation energy (4.463) 
respecting the coupling parameter λ (Ou-Yang & Levy, 1991; Nagy et al., 
1999),

	 λ
ρ

λ
ρ ρ

δ ρ
δρ

λ
λ

λ∂
∂

= + ⋅∇∫
E E E dc

c
c[ ] [ ] ( ) [ ]
( )

r r
r

r 	 (4.464)

by employing it through the functional differentiation with respecting the 
electronic density,

	 λ
ρ

λ
ρ ρ

δ ρ
δρ δρ

λ
λ λ

λ∂
∂

− = ⋅∇ + ⋅∇∫
V V V E dc

c c
c[ ] [ ] ( ) [ ]

( ) ( )
r r r

r r
r1 1 1

2

1
1 	 (4.465)

one obtains the equation to be solved for correlation potential V Ec c
λ λδ ρ δρ= [ ] /

V Ec c
λ λδ ρ δρ= [ ] / ; then the correlation energy is yielded by back integration:

	 E V dc c
λ λρ ρ ρ[ ] ( ,[ ]) ( )= ∫ r r r 	 (4.466)

from where the full correlation energy is reached out by finally setting 
λ =1.

When restricting to atomic systems, i.e., assuming spherical symmetry, 
and neglecting the last term of the correlation potential equation above, 
believed to be small (Liu et al., 1999), the equation to be solved simply 
becomes:

	 λ
ρ

λ
ρ

λ
λ λ∂

∂
− = ∇

V V r Vc
c c

[ ] [ ] 	 (4.467)

that can really be solved out with the solution:

	 V A rc p
p pλ λ= +1 	 (4.468)

with the integration constants Ap and p.
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However, since the Eq. (4.467) is a homogeneous differential one, the 
linear combination of solutions gives a solution as well. This way, the 
general form of correlation potential looks like:

	 V A rc p
p

p pλ λ= ∑ +1 	 (4.469)

This procedure can be then iterated by taking further derivative of 
Eq. (4.465) with respect to the density, solving the obtained equation until 
the second order correction over above first order solution (4.469),

	 V A r A r rc p
p

p p
p

p

p p pλ λ λ ρ= +∑ ∑+ +
1

1

1 1 1
2

2

2 1 1 2 2 	 (4.470)

By mathematical induction, when going to higher orders the K-truncated 
solution is iteratively founded as:

	 V A r rc pk
pk p p k

k

K

p

λ λ ρ= + −

=
∑∑ 1 1

1
	 (4.471)

producing the λ-related correlation functional:

	 E
k
A rc pk

pk p k

k

K

p

λ ρ λ ρ[ ] = +

=
∑∑ 1 1

1
	 (4.472)

and the associate full correlation energy functional (λ=1) expression:

	 E
k
A rc pk

p k

k

K

p
[ ]ρ ρ=

=
∑∑ 1

1
	 (4.473)

As an observation, the correlation energy (4.473) supports also the imme-
diate not spherically (molecular) generalization:

	 E
k
A x x xc lmnk

l m n k

k

K

lmn
[ ]ρ ρ=

=
∑∑ 1

1
	 (4.474)

Nevertheless, for atomic systems, the simplest specialization of the rela-
tion (4.473) involves the simplest density moments ρ = N  and rρ  that 
gives:

	 E A N A rc c c[ ]ρ ρ= +0 1 	 (4.475)
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Unfortunately, universal atomic values for the correlation constants Ac0 
and Ac1 in Eq. (4.475) are not possible; they have to be related with the 
atomic number Z that on its turn can be seen as functional of density as 
well. Therefore, with the settings

	 A C Z A C Zc c c c0 0 1 1= =ln , 	 (4.476)

the fitting of Eq. (4.475) with the HF related correlation energy (4.462) 
reveals the atomic-working correlation energy with the form (Liu et al., 
1999):

	 E N Z Z rc = − +0 16569 0 000401. ln . ρ 	 (4.477)

The last formula is circumvented to the high-density total correlation den-
sity approaches rooting at their turn on the Thomas-Fermi atomic theory. 
Very interesting, the relation (4.477) may be seen as an atomic reflec-
tion of the (solid state) high-density regime (rs <1) given by Perdew et al. 
(Perdew, 1986; Wang & Perdew, 1989; Seidl et al., 1999; Perdew et al., 
1996):

( )[ ] ( ) 0.048 0.0116 0.0311ln 0.0020 lnPZ
c s s s sE d r r r rρ ρ∞ = − − + +∫ r r

		  (4.478)

in terms of the dimensionless ratio

	 r r
as =

0

0

	 (4.479)

between the Wigner-Seitz radius r0
1 33 4= ( )/ /πρ  and the first Bohr radius 

a me0
2 2=  / .

Instead, within the low density regime ( rs ≥1) the first approximation 
for correlation energy goes back to the Wigner jellium model of electronic 
fluid in solids thus providing the LDA form (Perdew et al., 1998; Wilson & 
Levy, 1990):

	 E dc
W LDA

c
− = ∫[ ] [ ( )] ( )ρ ε ρ ρr r r 	 (4.480)
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where

	 ε ρc
sr

[ ( )] .
.

r = −
+

0 44
7 8

	 (4.481)

is the correlation energy per particle of the homogeneous electron gas with 
density ρ (Zhao et al., 1994; Gritsenko et al., 2000; Zhao & Parr, 1992; 
Lam et al., 1998; Gaspar & Nagy, 1987; Levy, 1991).

However, extended parameterization of the local correlation energy 
may be unfolded since considering the fit with an LSDA (ρ↑ and ρ↓) ana-
lytical expression by Vosko, Wilk and Nusair (VWN) (Vosko et al., 1980),

	 E dc
VWN

c[ , ] [ ( ), ( )] ( )ρ ρ ε ρ ρ ρ↑ ↓ ↑ ↓= ∫ r r r r 	 (4.482)

while further density functional gradient corrected Perdew (GCP) expan-
sion will look like:

E d d Bc
GCP

c[ , ] [ ( ), ( )] ( ) [ ( ), ( )] ( )ρ ρ ε ρ ρ ρ ρ ρ ρ↑ ↓ ↑ ↓ ↑ ↓= + ∇∫ r r r r r r r r 2 ++∫ ...
		  (4.483)

where the Perdew recommendation for the gradient integrant has the form 
(Perdew, 1986):
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with

	 B Cc[ ] [ ]/ρ ρ ρ= −4 3 	 (4.485)

being the electron gas expression for the coefficient of the gradient expan-
sion. The normalization in Eq. (4.484) is to the spin degeneracy:
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while the exponent containing functional

	 b C
C

[ ] ( ) [ ]
[ ]

/ρ π
ρ

ρ
=

→ ∞9 1 6 	 (4.487)

is written as the ratio of the asymptotic long-range density behavior to the 
current one, and is controlled by the cut-off f exponential parameter taking 
various values depending of the fitting procedures it subscribes (0.17 for 
closed shells atoms and 0.11 for Ne particular system (Savin et al., 1986, 
1987)).

More specifically, we list bellow some nonlocal correlation density 
functionals in the low density (gradient corrections over LDA) regime:

•	 the Rasolt and Geldar paramagnetic case (ρ ρ ρ↑ ↓= = / 2) is covered 
by correlation energy (Rasolt & Geldart, 1986):

	 E c c c r c r
c r c r c rc

RG s s

s s s

[ ]ρ = +
+ +

+ + +1
2 3 4

2

5 6
2

7
31

	 (4.488)

with c1=1.667×10–3, c1=2.568×10–3, c3=2.3266×10–2, c4=7.389×10–6, 
c5=8.723, c6=0.472, c7=7.389×10–2 (in atomic units).

•	 The gradient corrected correlation functional reads as (Savin et al., 
1984):
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•	 The Lee, Yang, and Parr (LYP) functional within Colle-Salvetti 
approximation unfolds like (Lee et al., 1988):
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where

γ
ρ ρ

ρ
η ρ ξ
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−ccρ r 1 3

		  (4.491)

and the constants: ac=0.04918, bc=0.132, cc=0.2533, dc=0.349.
•	 The open-shell (OS) case provides the functional (Wilson & Levy, 

1990):

	
E d
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c d rc

OS s s

s s

=
+ ∇

+ ∇ + ∇( ) +∫
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1 3

4 3 4 3
ss

1 2− ζ 	 (4.492)

with the spin-dependency regulated by the factor ζ ρ ρ ρ ρ= −( ) +( )↑ ↓ ↑ ↓/ ,
ζ ρ ρ ρ ρ= −( ) +( )↑ ↓ ↑ ↓/ , approaching zero for closed-shell case, while the specific 

coefficients are determined through a scaled-minimization proce-
dure yielding the values: as=–0.74860, bs=–0.06001, cs=3.60073, 
ds=0.900000.

•	 Finally, Perdew and Zunger (PZ) recommend the working functional 
(Perdew & Zunger, 1981):

	
E d

r rc
PZ p

p s p s

0

1 21
[ ] ( )ρ ρ

α

β β
=

+ +∫ r r 	 (4.493)

with the numerical values for the fitting parameters founded as: 
αp=-0.1423, β1p=1.0529, β2p=0.3334.

4.6.3.4  Density Functionals of Exchange-Correlation Energy

Another approach in questing exchange and correlation density function-
als consists in finding them both at once in what was defined as exchange-
correlation density functional (4.404). In this regard, following the Lee 
and Parr approach (Lee & Parr, 1990), the simplest starting point is to 
rewrite the inter-electronic interaction potential

	
V

r
d dee = ∫∫

ρ2 1 2

12
1 2

( , )r r r r 	 (4.494)
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and the classical (Coulombic) repulsion

	
J

r
d d= ∫∫

1
2

1 2

12
1 2

ρ ρ( ) ( )r r r r 	 (4.495)

appeared in the formal exchange energy ( )V Jee −  in Eq. (4.396), by per-
forming the previously introduced coordinate transformation (4.417), fol-
lowed by integration of the averaged pair and coupled densities (denoted 
with over-bars) over the angular components of s:

	
V d sds see = ∫ ∫4 2π ρr r( , ) 	 (4.496)

	
J d sds= + −∫ ∫2 2 2π ρ ρr r s r s( / ) ( / ) 	 (4.497)

Now, the second order density matrix in Eq. (4.496) can be expressed as

	
ρ ρ ρ2 1

1
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with the help of the introduced function F s1( , )r  carrying the form

	
F s s s F s1

2
21

1( , ) exp[ ( ) ]
( )

[ ( ) ] ( , )r r
r

r r= −
−

+
+{ }α

α
α 	 (4.499)

so that the cusp condition for ρ 2 ( , )r s
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to be satisfied for a well behaved function of a Taylor series expansion 
type
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when α ( )r  stands for a suitable function of r as well, see bellow.
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On the other side, the average ρ ρ( / ) ( / )r s r s+ −2 2  in (4.497) and 
(4.498) supports a Taylor expansion (Berkowitz, 1986):
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with
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being the Parr modified kinetic energy of Weizsäcker type (Parr & Young, 
1989).

Inserting relations (4.496)–(4.503) in ( )V Jee −  difference it is even-
tually converted from the “genuine” exchange meaning into practical 
exchange-correlation energy characterized by the density functional 
form:
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	 (4.504)

Making use of the two possible multiplication of the series in Eq. (4.504), 
i.e., either by retaining the α ( )r  containing function only or by including 
also the density gradient terms in the first curled brackets, thus retaining 
also the term containing τw ( )r  function, the so-called I-xc or II-xc type 
functionals are respectively obtained.

Now, laying aside other variants and choosing the simple (however 
meaningfully) density dependency

	
1/3( ) ( ), constantα κρ κ= =r r 	 (4.505)
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the provided exchange-correlation functionals are generally shaped as 
(Lee & Parr, 1990):
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	 (4.506)

These functionals are formally exact for any κ  albeit the resumed 
functions Axc(r), Bxc(r), and Cxc(r) are determined for each particular 
specialization.

Going now to the specific models, let’s explore the type I of exchange-
correlation functionals (4.506). Firstly, they can further undergo simplifi-
cation since the reasonable (atomic) assumption according which

	 κρ1 3 1/ ( ) ,r r<< ∀ 	 (4.507)

Within this frame the best provided model is of Xα-Padé approximation 
type, containing N-dependency (Lee & Parr, 1990):
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with a0
Xα=0.7475, a1

Xα =17.1903, and a2
Xα =14.1936 (atomic units).

When the condition (4.507) for κ is abolished the Wigner-like model 
results, again, having the best approximant exchange-correlation model as 
the Padé form (Lee & Parr, 1990):
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with a0
Wig=0.76799, a1

Wig =17.5943, a2
Wig =14.8893, and κI (Wig)=4.115∙10–3 

(atomic units).
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Turning to the II-type of exchange-correlation functionals, the small 
density condition (4.507) delivers the gradient corrected Xα model, taking 
its best fitting form as the N-dependent Padé approximant (Lee & Parr, 
1990):

	 E b b N
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with b0
Xα=0.7615, b1

Xα =1.6034, b2
Xα =2.1437, and c2

Xα =6.151×10–2 (atomic 
units), while when laying outside the Eq. (4.507) condition the gradient 
corrected Wigner-like best model is proved to be without involving the 
N-dependency (Lee & Parr, 1990):
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with b0
Wig =0.80569, c0

Wig =3.0124×10–3, and κII(Wig)=4.0743×10–3 (atomic 
units).

Still, a Padé approximant for the gradient-corrected Wigner-type 
exchange-correlation functional exists and it was firstly formulated 
by (Rasolt & Geldar, 1986) with the working form (Lee & Bartolotti, 
1991):
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 with Bxc
RG given with the Padé form:
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having the fitted coefficients c1
RG=2.568, c2

RG=9.0599, c3
RG=2.877×10–3, 

c4
RG=8.723, c5

RG=0.472, and c3
RG=7.389×10–2 (atomic units). Some stud-

ies also consider the nonlocal correction in Eq. (4.512) premultiplied by 
the 10/7 factor, which was found as appropriate procedure for atomic 
systems.
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Finally, worth noting the Tozer and Handy general form for exchange-
correlation functionals viewed as a sum of products of powers of density 
and gradients (Tozer & Handy, 1998):

	 E F dxc
TH

xc= ( )↑ ↓ ↑ ↓ ↑↓∫ ρ ρ ζ ζ ζ, , , , r 	 (4.514)

with
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abcd abcd
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Where Ra a a= +↑ ↓ρ ρ , S mb b= 2 , see Eq. (4.486) for m definition, along the 
notations
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and

	 ζ ρ↑ ↑= ∇ , ζ ρ↓ ↓= ∇ , ζ ρ ρ↑↓ ↑ ↓= ∇ ⋅∇ , ρ ρ ρ= +↑ ↓ 	 (4.517)

The coefficients ωabcd of Eq. (4.515) are determined through minimiza-
tion procedure involving the associated exchange-correlation potentials 
V fxc
abcd

abcd↑ ↓ ↑ ↓=( ) ( )( ) ( ) / ( )r r rδ δρ  in Eq. (4.514) functional. The results 
would depend upon the training set of atoms and molecules but pres-
ents the advantage of incorporating the potential information in a non-
vanishing asymptotical manner, with a semi-empirical value. Moreover, 
its exact asymptotic exchange-correlation potential equals chemical hard-
ness (Putz, 2003, 2007a,b) for open-shell being less than that for closed 
shell systems, thus having the merit of including chemical hardness as 
an intrinsic aspect of energetic approach, a somewhat absent aspect from 
conventional functionals so far.

However, since electronegativity and chemical hardness closely 
relate with chemical bonding, their relation with the total energy and 
component functionals is in next at both conceptual and applied levels 
explored.




