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Since based on fitting with spectroscopic transitions the ZINDO meth-
ods are recommended in conjunction with single point calculation and 
not with geometry optimization, this should be consider by other off-set 
algorithms.

Beyond either NDO or NDDO methods, the self-consistent computa-
tion of molecular orbitals can be made by the so-called ab initio approach, 
directly relaying on the HF equation or on its density functional extension, 
as will be in next unfolded.

4.5.4 AB INITIO METHODS: THE HARTREE-FOCK APPROACH

The alternative to semi-empirical methods is the full self-consistent calcu-
lation or the so-called ab initio approach; it is based on computing of all 
integrals appearing on Eq. (4.281), yet with the atomic Slater type orbit-
als (STO), exp(−αr), being replaced by the Gaussian type orbitals (GTO) 
(Boys, 1950):

 φ αA
GTO
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Ax y z r= −( )exp 2  (4.312)

in molecular orbitals expansion – a procedure allowing for much simpli-
fication in multi-center integrals computation. Nevertheless, at their turn, 
each GTO may be generalized to a contracted expression constructed upon 
the primitive expressions of Eq. (4.312):
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p Ar d r( ) = ( )∑ ,  (4.313)

where dpμ and αA are called the exponents and the contraction coefficients 
of the primitives, respectively. Note that the primitive Gaussians involved 
may be chosen as approximate Slater functions (Szabo & Ostlund, 1996), 
Hartree-Fock atomic orbitals (Clementi & Roetti, 1974), or any other set 
of functions desired so that the computations become faster. In these con-
ditions, a minimal basis set may be constructed with one function for H 
and He, five functions for Li to Ne, nine functions for Na to Ar, 13 func-
tions for K and Ca, 18 functions for Sc to Kr, ..., etc., to describe the core 
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and valence occupancies of atoms (Hehre et al., 1969; Collins et al., 1976; 
Stewart, 1970). Although such basis does not generally provide accurate 
results (because of its small cardinal), it contains the essential information 
regarding the chemical bond and may be useful for qualitative studies, as 
is the present case for aromaticity scales where the comparative trend is 
studied.

Actually, when simple ab initio method is referred it means that the 
Hartree-Fock equation (4.278) with full Fock matrix elements (Hartree, 
1928a-b, 1957; Fock, 1930) of Eqs. (4.280) and (4.281) is solved for a 
Gaussian contracted basis (4.313). Actually, the method evaluates itera-
tively the kinetic energy and nuclear-electron attraction energy integrals – 
for the effective Hamiltonian, along the overlap and electron-electron 
repulsion energy integrals (for both the Coulomb and exchange terms), 
respectively written as:

 Tµν µ ν= − ∇
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2  (4.314)
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12r
 (4.317)

until the consistency in electronic population of Eq. (4.280) between two 
consecutive steps is achieved.

Note that such calculation assumes the total wave function as a single 
Slater determinant, while the resultant molecular orbital is described as 
a linear combination of the atomic orbital basis functions (MO-LCAO). 
Multiple Slater determinants in MO description projects the configuration-
ally and post-HF methods, and will not be discussed here.
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4.5.4.1 Hartree-Fock Orbital Energy

Skipping the reference to the electronic (e) subscripts throughout Eqs. 
(4.250)–(4.262), the Hartree-Fock trial functional can firstly be arranged 
as by the optimization procedure (Putz & Chiriac, 2008)
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The one-electron (core) energetic component of Eq. (4.318) may be suc-
cessively unfolded as:

  (4.319)
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where it was considered that the introduced one-electron effective opera-
tor hi

∧

( )1  selects from the Hartree wave function (4.259) the associate spin-
orbital, for each electron, accordingly.

Similarly, the two-electron energetic component of Eq. (4.318) may be 
successively transformed as:
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resulting in the effective electron-electron repulsion energy once the quan-
tum exchange terms Kij are subtracted from the classical Coulombic ones 
Jij. Here we recognize the combined classical (Coulombic) – quantum 
(exchange) effects that appear in the inter-electronic repulsion Hamiltonian 
term (4.255).

All together, with the results of Eqs. (4.319) and (4.320) back in 
Eq. (4.318), we get for the trial Hartree-Fock functional the expression:
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In next, we are going to apply the variational principle respecting the vari-
ations of the spin-orbitals in terms of Lagrange multipliers ε ij that widely 
demands that:
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However, by employing the canonical transformation, i.e., the N2 param-
eters may be considered as the elements of a Hermitian matrix which 
through a unitary transformation become a diagonal matrix, the outset 
form of the variational principle (4.322) now reads:
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Note that performing a unitary transformation will not affect the average 
of the electronic Hamiltonian but only the HF wave function by a phase 
factor of unity modulus. Under these circumstances, the famous Hartree-
Fock equation results from the successive equivalent forms:
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Still, a more compact form of HF equation (4.322c) may be achieved since 
specific potential notations are introduced. For instance, the electrostatic 
repulsion potential (i.e., the Coulombic interaction) can be shortened as:
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while for the exchange potential (i.e., non-local interaction) we can define 
it as satisfying the relation:
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With these the above HF equation (4.322c) reduces to its most simple form:

 F i i
HF

i

∧

=( ) ( ) ( )1 1 1χ ε χσ σ  (4.325)

where the one-electronic Fock operator
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was introduced in terms of the effective-one potential
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Now, since the spin-orbitals satisfies the normalization condition

 χ τσ
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1 =∫  (4.328)

the orbital energies look like:
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while the total HF energy will take the form:
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Remarkably, one can clearly see that the predicted HF energy (4.330) dif-
fers from the simple sum over the HF orbital energies (4.331) by the effec-
tive electron-electron interaction energy Uee. We will return on this matter 
with more subtle consequences on Section 4.4.4.3.

4.5.4.2 About Correlation Energy

The post self-consistent era was mainly dedicated to the implementa-
tion of the so nominated correlation energy in the computation (Putz & 
Chiriac, 2008).

Firstly, it was noticed that a single Slater determinant (on which base 
the current HF analysis was exposed) can never account for a complete 
description of the many-electronic interaction. That is, the correlation 
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energy can be introduced as the difference between the exact eigen-value 
and the Hartree-Fock energy of the same Hamiltonian for the concerning 
state:

 E E Ecorr
HF= −  (4.332)

The next step was sustained by the assumption that the correlation 
energy can be seen as the perturbation of the self-consistent-field energy, 
which is associated with a wave function derived for a single electronic 
configuration. At this point the basic methods of approximation used 
in quantum chemistry, namely the perturbation and variational, can be 
considered.

In the case that perturbation method is employed, assuming the unper-
turbed wave function and energy as the HF solutions the exact eigen-func-
tions and eigen-values can be written as expanded series

 Ψ Ψ Ψ Ψe e
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e e= + + + 

( ) ( ) ...1 2 2  (4.333)

 E E E Ee
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by introducing the ordering parameter . Through truncating the series in 
the second, third or fourth order generates the so-called Møller-Plesset 
MP2, MP3, and MP4 perturbative approximations, respectively.

On the other side, the linear variational method can be practiced 
within the configuration interaction (CI) approach of the many-electronic 
wave-function:
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where the Ψ0, Ψa
s, Ψab

sd, Ψabc
sdt  stands for the ground, single excited, double 

excited, and triple excited N-electron trial wave functions, respectively, 
for a given spin state. While the CI wave function is the subject of the 
eigen-problem:
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the correlation correction to HF energy can be achieved through subtract-
ing the HF energy from last equation
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However, although, starting from this point, many sophisticated methods 
for wave function expansion, for example, the coupled cluster approach, 
multi-configuration self-consistent-field method or multi-reference CI 
methods, have been developed, the correlation problem faced many com-
putational limitation, some of them almost insurmountable, due to the 
immense number of integrals to be evaluated.

4.5.4.3 Koopman’s Orbital Theorem with Hartree-Fock Picture

Now one will make the essential difference between (Putz, 2013):

• the entire orbital spectrum available to a many –body systems, which 
include occupied orbitals + unoccupied orbitals (up to infinity), 
denoted by ψ i i N= →∞1,...,

 which generates the Hartree-Fock energy
• the occupied orbitals on the many-body system, which will deter-

mine the total energy of the system, denoted by ψ a i N=1,...,

All together, we can deal with the first lowest N spin-orbitals occu-
pied in the overall wave-function Ψ0 1

( ) ... ...N
a N= ψ ψ ψ , while the rest 

(from N up to infinity) virtual of unoccupied orbitals, formally denoted as 
ψ ψr s, ,... (see Figure 4.3)
The conceptual difference consist in the fact that when dealing with infi-
nite number of orbitals one does not avoid the double counting since there 
will be always available virtual orbitals to be occupied since the infinite 
cardinal of this set of orbitals; so we have with the actual subtle (mixed) 
notations:
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Here one remarks that the Coulombic inter-electronic

 J d rb b b( ) ( ) ( )*1 2 2 212
1= −∫ ψ ψ  (4.339)

and exchange terms
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were remained with occupied orbitals’ notation since they are readily com-
puted among existing electrons.

FIGURE 4.3 The paradigmatic in silico spectra of the first three highest occupied and 
lowest unoccupied molecular orbitals HOMOs and LUMOs illustrating the respective, 
successive, ionization and affinities energies as provided by Koopmans’ theorem. Note KT 
implies ionization and affinity of one electron on successive levels and not of successive 
electrons on levels- see the marked occupied and virtual spin-orbitals (Putz, 2013).
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Interesting, when the orbital energy (4.338) is summed just over occu-
pied Hartree-Fock orbitals, as done in Eq. (4.331), now we equivalently 
obtain, yet under new notation revealing the restrain to the occupied 
orbitals

 εa
a

N

a

N

a b

N

a h a ab ab
= = = =

∑ ∑ ∑= +
1 1 1 1



,
 (4.341)

Instead, when searched for total energy of the system one should avoid 
double counting and deal with occupied only orbitals to successively get 
within the actual notations

  (4.342)
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In obvious difference respecting Eq. (4.341), as already anticipated from 
the Eqs. (4.330) & (4.331).

Eq. (4.341) does not exactly recovering the above total energy of the 
N-occupied spin-orbitals Eq. (4.342), when they where considered “free 
(not depending)” of computation (basis set); however, this may be consid-
ered as in silico manifestation of quantum “observability” (once a basis 
set representation applies) which destroys the quantum system in itself’s 
(or eigen) manifestation. Here the mathematical properties of eigen-func-
tion computed upon a given basis on Hilbert-Banach spaces determine 
the “shift” or the “unrealistic” energies of orbitals since spanning those 
occupied and unoccupied alike; from the present dichotomy basically fol-
lows all critics on the Hartree-Fock formalism and of allied molecular 
orbital theory, Koopmans’ “theorem” included (see below); instead, there 
seems that such departure of the computed from the exact energy orbit-
als is inherent to quantum formalism and not necessary a weakness of 
the Hartree-formalism itself, since it will appear to any quantum many-
particle problem involving eigen-problems.

Now, returning to the above occupied and unoccupied orbital energy, 
one may assume (Koopmans’ ansatz) that, on the frontier levels of a many-
electronic system, extracting or adding of an electron (or even few of them, 
but lesser than the total number of valence electrons) will not affect the 
remaining (or N N± ± ±1 1 1, ',... electronic orbitals) states, on successive 
levels and not successive electrons on levels (see Figure 4.3).

This approach allows simplifying of the common terms and emphasiz-
ing only on the involving frontier orbitals participating in chemical reactiv-
ity. Accordingly, for the first ionization potential one successively obtains 
the first highest occupied molecular orbital (HOMO), see Figure 4.3:
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Remarkable, in this analytics, one starts with in se quantum expression 
of total energies of the N and (N–1) systems and ends up with a result char-
acteristic to the computational (shifted) realm since recovering the orbital 
energy of the in silico state from which the electron was removed. Yet, one 
may ask how such in se–to–in silico quantum chemical passage is pos-
sible; the answer is naturally positive since the above derivation associates 
with the ionization process which is basically an observer intervention to 
the genuine quantum system, from where the final result will reflect the 
energetic deviation from in se–to–in silico as an irrefutable quantum mani-
festation of electronic system.

Similarly, for electronic affinity, one will act on the in se quantum sys-
tem to add an electron at the frontier level and, under the “frozen spin-
orbitals” physical-chemical assumption, one gets the energetic turn from 
the genuine HF expression to the in silico orbital energy on which the 
“action” was undertaken towards the first lowest occupied molecular 
orbital (LUMO), see Figure 4.3:
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These results are usually considered as defining the popular Koopmans 
theorem, used for estimating the observable quantities as ionization 
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potential and electronic affinity in terms of “artefactual” computed orbital 
energies (first approximation) and in the spin-orbitalic frozen framework 
during the electronic extraction or addition (the second approximation).

However one may ask whether this approximation is valid and in which 
conditions. This can be achieved by reconsidering the above Koopmans 
first order IP and EA to the superior differences within Hartree-Fock 
framework; as such, for the second order of ionization potential one gets 
the second highest occupied molecular orbital (HOMO2), see Figure 4.3:
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Note that this derivation eventually employs the equivalency for the 
Coulombic and exchange terms for orbitals of the same nature (with miss-
ing the same number of spin-orbitals, see Figure 4.3). However, in the case 
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this will be further refined to isolate the first two orders of highest occu-
pied molecular orbitals, the last expression will be corrected with HOMO1/
HOMO2 (Coulombic and exchange) interaction to successively become
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However, reloading this procedure for electronic affinity process too, 
one gets
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When combining Eq. (4.347) with its IP counterpart (4.346) there appears 
that the simple Koopmans’ orbitals energy difference is corrected by the 
HOMO1/HOMO2 vs. LUMO1/LUMO2
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This expression is usually reduced to the superior order LUMO-HOMO 
difference

 IP EA LUMO HOMO2 2 2 2− ≅ −ε ε( ) ( )  (4.349)
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due to the energetic spectra symmetry of Figure 4.3 relaying on the bond-
ing vs. anti-bonding displacements of orbitals, specific to molecular orbital 
theory. Therefore, with the premise that molecular orbital theory itself is 
correct, or at least a reliable quantum undulatory modeling of multi-elec-
tronic systems moving in a nuclei potential, the above IP-EA differences 
in terms of Koopmans’ in silico LUMO-HOMO energetic gaps holds also 
for superior orders.

4.5.4.4 Chemical Reactivity Indices in Orbital Energy 
Representation

Koopmans’ theorem entered on the quantum chemistry as a versatile tool 
for estimating the ionization potentials for closed-shells systems, and it 
was widely confirmed for organic molecular systems, due to the inner 
usually separation between sigma (core) and pi (valence) sub-electronic 
systems, allowing to treat the “frozen spin-orbitals” as orbitals not essen-
tially depending on the number of electrons in the valence shells, when 
some of them are extracted (via ionization) or added (via negative attach-
ments); this approximation ultimately works for Hartree-Fock systems 
when electronic correlation may be negligible or cancels with the orbital 
relaxations during ionization or affinity processes, respectively; natu-
rally, it works less when correlation is explicitly counted, as in Density 
Functional Theory, where instead the exchange energies are approximated 
or merely parameterized so that “loosing” somehow on the genuine spin-
orbital nature of the mono-determinantal approach of the Hartree-Fock, 
with a natural energetic hierarchy included.

Beside the many concepts in modeling the chemical reactivity and 
interaction electronegativity and chemical hardness are by far the most 
versatile measures, to be detailed in the next volumes of this set, since 
their direct connection with total, valence or orbital energies of atoms and 
molecules via the first and the second derivative of such energies with 
respecting the available or concerned electrons therein. Actually, such 
derivatives, may use the molecular frontier orbitals when based on differ-
ential expansion of the energy around its isolated value to account both for 
the electrophilic (electrons accepting) and nucleophilic (electrons donat-
ing) states.



452 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

Starting from the general mathematical framework, given the values of 
a function f(n) on a set of nodes ..., , , , , , , ,...n n n n n n n− − − + + +{ }3 2 1 1 2 3  
the finite difference approximations of the first fn

' and second fn
' ' deriva-

tives in the node n, will spectrally depend on the all the nodal values. 
However, the compact finite differences, or Padé, schemes that mimic this 
global dependence write as (Lele, 1992):
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The involved sets of coefficients, a b c1 1 1 1 1, , , ,α β{ } and a b c2 2 2 2 2, , , ,α β{ } are 
derived by matching Taylor series coefficients of various orders. This way, 
their particularizations can be reached as the second (2C)-, fourth (4C)- 
and sixth (6C)-order central differences; standard Pade (SP) schemes; 
sixth (6T)- and eight (8T)-order tridiagonal schemes; eighth (8P)- and 
tenth (10P)- order pentadiagonal schemes up to spectral-like resolution 
(SLR) ones, see Table 4.1.

Assuming that the function f(n) is the total energy E(N) in the actual 
node that corresponds to the number of electrons, the compact finite differ-
ence, the derivatives of Eqs. (4.350) and (4.351) may be accurately evalu-
ated through considering the states with N-3, N-2, N-1, N+1, N+2, N+3 
electrons, whereas the derivatives in the neighbor states will be taken only 
as their most neighboring dependency. This way, the working formulas for 
electronegativity will be (Putz, 2010a):
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∂
∂
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TABLE 4.1 Numerical Parameters for the Compact Finite Second (2C)-, Fourth (4C)- 
and Sixth (6C)-Order Central Differences; Standard Padé (SP) Schemes; Sixth (6T)- 
and Eight (8T)-Order Tridiagonal Schemes; Eighth (8P)- and Tenth (10P)-Order 
Pentadiagonal Schemes up to Spectral-Like Resolution (SLR) Schemes Unfolding the 
Numerical Derivatives (4.350) and (4.350) Then Used for the Electronegativity and 
Chemical Hardness of Eqs. (4.352) and (4.353) and the Subsequent of Their Respective 
Formulations: Eqs. (4.362) and (4.363); (4.368) and (4.369) 

Scheme Electronegativity Chemical Hardness

a1 b1 c1 α1 β1 a2 b2 c2 α2 β2

2C 1 0 0 0 0 1 0 0 0 0

4C 
4
3

−
1
3

0 0 0
4
3

−
1
3

0 0 0

6C
3
2

−
3
5

1
10

0 0
12
11

3
11

0
2

11
0

SP
5
3

1
3 0

1
2 0

6
5 0 0

1
10 0

6T
14
9

1
9

0
1
3

0
3
2

−
3
5

1
5

0 0

8T
19
12

1
6

0
3
8

0
147
152

51
95

−
23

760
9
38

0

8P
40
27

25
54

0
4
9

1
36

320
393

310
393

0
344

1179
23

2358

10P
17
12

101
150

1
100

1
2

1
20

1065
1798

1038
899

79
1798

334
899

43
1798

SLR 1.303 0.994 0.038 0.577 0.09 0.216 1.723 0.177 0.502 0.056

Adapted from Rubin & Khosla (1977), Putz (2010a, 2011), and Putz et al. (2004).

−
∂
∂

+
∂
∂







 −

∂
∂

+
∂
∂









=
−

− + − +

+

α1 1 1 1 2 2

1
1

E
N

E
N

E
N

E
N

a E E

N N N N

N N

β

−− + − + −

− +

+
−

+
−

−
−

+
−






1
1

2 2
1

3 3

1 1
2

1
2

2 4 6

2 2

b E E c E E

a E E a E E

N N N N

N N N Nα

 −

−
+

−







− − + +β1 1
1 3

1
3 1

2 2
a E E a E EN N N N



454 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

 

= +( ) −
+ −( ) −

+ −( ) −

+ − + −

+

a E E b a E E

c a E E

N N N N

N N

1 1
1 1

1 1 1
2 2

1 1 1
3

1
2

2
4

3

β α

β −−3

6
 (4.352)

and respectively for the chemical hardness as (Putz, 2011; Putz, 2010a; 
Putz et al., 2004):

  (4.353)

where the involved parameters discriminate between various schemes 
of computations and the spectral-like resolution (SLR), see Table 4.1 
(Rubin & Khosla, 1977; Putz, 2011; Putz, 2010a; Putz et al., 2004).
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Next, the Eqs. (4.352) and (4.353) may be rewritten in terms of the 
observational quantities, as the ionization energy and electronic affinity 
are with the aid of their basic definitions from the involved eigen-energies 
of i-th (i=1,2,3) order

 I E Ei N i N i= −− − +1  (4.354)

 A E Ei N i N i= −+ − +1  (4.355)

As such they allow the energetic equivalents for the differences

 E E I AN N+ −− = − +1 1 1 1( )  (4.356)

 E E I A I AN N+ −− = − + − +2 2 1 1 2 2( ) ( )  (4.357)

 E E I A I A I AN N+ −− = − + − + − +3 3 1 1 2 2 3 3( ) ( ) ( )  (4.358)

and for the respective sums (Putz, 2011; Putz, 2010a; Putz et al., 2004)

 E E I A EN N N+ −+ = − +1 1 1 1 2( )  (4.359)

 E E I A I A EN N N+ −+ = − + − +2 2 1 1 2 2 2( ) ( )  (4.360)

 E E I A I A I A EN N N+ −+ = − + − + − +3 3 1 1 2 2 3 3 2( ) ( ) ( )  (4.361)

being then implemented to provide the associate “spectral” molecular ana-
lytical forms of electronegativity
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and for chemical hardness (Putz, 2011; Putz, 2010a; Putz et al., 2004):
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It is worth remarking that when particularizing these formulas for 
the fashioned two-point central finite difference, i.e., when having 
a b c1 1 1 1 11 0= = = = =, α β  and a b c2 2 2 2 21 0= = = = =, α β  of Table 4.1, 
one recovers the consecrated Mulliken (spectral) electronegativity 
(Mulliken, 1934)

 χ2
1 1

2C
I A

=
+  (4.364)

and the chemical hardness basic form relating with the celebrated Pearson 
nucleophilic-electrophilic reactivity gap (Parr & Yang, 1989; Pearson, 
1997)

 η2
1 1

2C
I A

=
−  (4.365)

already used as measuring the aromaticity through the molecular stability 
against the reaction propensity (Ciesielski et al., 2009; Chattaraj et al., 
2007).
Finally, for computational purposes, Eqs. (4.362) and (4.363) may be 
once more reconsidered within the Koopmans’ frozen core approxima-
tion (Koopmans, 1934), in which various orders of ionization poten-
tials and electronic affinities are replaced by the corresponding frontier 
energies

 Ii HOMO i= −ε ( )  (4.366)
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 Ai LUMO i= −ε ( )  (4.367)

so that the actual working compact finite difference (CFD) orbital molecu-
lar electronegativity unfolds as (Putz, 2011; Putz, 2010a; Putz et al., 2004):

  (4.368)

along with the respective chemical hardness formulation
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 (4.369)

Note that the actual CFD electronegativity and chemical hardness expres-
sions do not distinguish for the atoms-in-molecule contributions, while 
providing post-bonding information and values, i.e., for characterizing 
the already stabilized/optimized molecular structure towards its further 
reactive engagements. The difference between the atoms-in-molecule pre-
bonding stage and the molecular post-bonding one constitutes the basis 
of the actual absolute aromaticity as will be elsewhere introduced (see 
Volume III/Chapter 4 of the present five-volume set).

An illustrative analysis for homologues organic aromatic hydrocarbons 
regarding how much the second, respectively the third order of the IP-EA 
or LUMO-HOMO gaps affect the chemical hardness hierarchies, and 
therefore their ordering aromaticity, will be in the next section exposed 
and discussed.
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4.5.4.5 Testing Koopmans Theorem by Chemical Harness 
Reactivity Index

It is true Koopmans theorem seems having some limitation for small mol-
ecules and for some inorganic complexes (Duke & O’Leary, 1995; Angeli, 
1998).

However, one is interested here for testing the Koopmans’ superior 
orders’ HOMO-LUMO behavior on the systems that work, such as the 
aromatic hydrocarbons. Accordingly, in Table 4.2 a short series of paradig-
matic organics are considered, with one and two rings and various basic 
ring substitutions or additions, respectively (Putz, 2010b). For them, the 
HOMO and LUMO are computed, within semi-empirical AM1 framework 
(Hypercube, 2002), till the third order of Koopmans frozen spin-orbitals’ 
approximation; they are then combined into the various finite difference 
forms (from 2C to SLR) of chemical hardness as above, see Table 4.1, 
grouped also in sequential order respecting chemical hardness gap con-
tributions (i.e., separately for {LUMO1-HOMO1}, {LUMO1-HOMO1, 
LUMO2-HOMO2}, {LUMO1-HOMO1, LUMO2-HOMO2, LUMO3-
HOMO3}): the results are systematically presented in Tables 4.3–4.5.

The results of Tables 4.3-4.5 reveals very interesting features, in the 
light of considering the aromaticity as being reliably measured by chemi-
cal hardness alone, sine both associate with chemical resistance to reactiv-
ity or the terminus of a chemical reaction according with the maximum 
chemical hardness principle (Chattaraj et al., 1991,1995).

Moreover, the benchmark ordering hierarchy was chosen as produced 
by Hückel theory (since being an approximate approach for quantum 
chemical modeling of chemical bonding is let to be exposed in the Volume 
III of this work (Putz, 2016a), dedicated to quantum molecule and chemical 
reactivity) and approximation since closely related with pi-electrons delo-
calized at the ring level as the main source of the experimentally recorded 
aromaticity of organic compounds under study (Putz et al., 2010).

Note that although computational method used here is of low level 
it nevertheless responds to present desiderate having an non (orbitalic) 
basis dependent computational output and discussion, whereas further 
(Hartree-Fock) ab initio, (Møller–Plesset) perturbation methods and basis 
set dependency considerations, as HF, MP2, and DFT, respectively, for 
instance, can be further considered for comparative analysis.
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TABLE 4.2 Molecular Structures of Paradigmatic Aromatic Hydrocarbons (Putz, 2010b), Ordered Downwards According with Their 
Hückel First Order HOMO-LUMO Gap (Putz et al., 2010), along Their First Three Highest Occupied (HOMOs) and Lowest Unoccupied 
(LUMOs) (in electron-volts, eV) Computationally Recorded Levels Within Semi-Empirical AM1 Method (Hypercube, 2002)

Formula
Name
CAS
Index (mw[g/mol])

Molecular 
Structure

HOMO (1) HOMO (2) HOMO (3) LUMO (1) LUMO (2) LUMO (3)

C6H6

Benzene

71-43-2

I (78.11)

–9.652904 –9.653568 –11.887457 0.554835 0.555246 2.978299

C4H4N2

Pyrimidine

289-95-2

II (80.088)

–10.578436 –10.614932 –11.602985 –0.234993 –0.081421 2.543489

C5H5N

Pyridine

110-86-1

III (79.10)

–9.932324 –10.642881 –10.716373 0.138705 0.278273 2.791518

C6H6O

Phenol

108-95-2

IV (94.11)

–9.114937 –9.851116 –11.940266 0.397517 0.507986 2.839472
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Formula
Name
CAS
Index (mw[g/mol])

Molecular 
Structure

HOMO (1) HOMO (2) HOMO (3) LUMO (1) LUMO (2) LUMO (3)

C6H7N

Aniline

62-53-3

V (93.13)

–8.213677 –9.550989 –11.501620 0.758436 0.888921 2.828224

C10H8

Naphthalene

91-20-3

VI (128.17)

–8.710653 –9.340973 –10.658237 –0.265649 0.180618 1.210350

C10H8O

2-Naphthol

135-19-3

VII (144.17)

–8.641139 –9.194596 –10.673578 –0.348490 0.141728 1.117961

TABLE 4.2 Continued
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TABLE 4.2 Continued

Formula
Name
CAS
Index (mw[g/mol])

Molecular 
Structure

HOMO (1) HOMO (2) HOMO (3) LUMO (1) LUMO (2) LUMO (3)

C10H8O

1-Naphthol

90-15-3

VIII (144.17)

–8.455599 –9.454717 –10.294406 –0.247171 0.100644 1.184179

C10H9N

2-Naphthalenamine

91-59-8

IX (143.19)

–8.230714 –8.984826 –10.346699 –0.177722 0.278785 1.298534

C10H9N

1-Naphthalenamine

134-32-7

X (143.19)

–8.109827 –9.343444 –9.940875 –0.176331 0.230424 1.235745
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TABLE 4.3 Chemical Hardness Values (in eV) as Computed for Molecules of Table 4.2 with First LUMO(1) –HOMO(1) Gap Order of 
Eq. (4.326) with Parameters of Table 4.1 (Putz, 2013)

Molecule η2C η4C η6C ηSP η6T η8T η8P η10P ηSLR

I 5.10387 6.379837 4.903511 5.512179 7.003643 4.434762 4.030827 3.542746 2.971354
II 5.171722 6.464652 4.968699 5.585459 7.096751 4.493719 4.084414 3.589844 3.010856
III 5.035515 6.294393 4.837839 5.438356 6.909845 4.375368 3.976843 3.495299 2.931559
IV 4.756227 5.945284 4.569516 5.136725 6.5266 4.132695 3.756273 3.301437 2.768964
V 4.486057 5.607571 4.309951 4.844941 6.155866 3.897943 3.542904 3.113904 2.611677
VI 4.222502 5.278128 4.056743 4.560302 5.794211 3.66894 3.334759 2.930963 2.458242
VII 4.146325 5.182906 3.983556 4.47803 5.689679 3.60275 3.274597 2.878086 2.413893
VIII 4.104214 5.130268 3.943098 4.432551 5.631894 3.56616 3.24134 2.848856 2.389378
IX 4.026496 5.03312 3.868431 4.348616 5.525247 3.49863 3.179962 2.794909 2.344132
X 3.966748 4.958435 3.811029 4.284088 5.44326 3.446715 3.132775 2.753437 2.309348
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TABLE 4.4 Chemical Hardness Values (in eV) as Computed for Molecules of Table 4.2 with First LUMO(1) –HOMO(1) and Second 
Order LUMO(2) –HOMO(2) Gaps of Eq. (4.326) with Parameters of Table 4.1 (Putz, 2013)

Molecule η2C η4C η6C ηSP η6T η8T η8P η10P ηSLR

I 5.10387 5.95447 4.239094 4.89965 6.351413 3.933493 3.865279 3.990091 4.778726
II 5.171722 6.025756 4.283151 4.953449 6.423777 3.976506 3.9136 4.051417 4.875712
III 5.035515 5.839345 4.127062 4.783086 6.212105 3.839122 3.799743 3.973858 4.865044
IV 4.756227 5.513655 3.895318 4.515179 5.864769 3.624046 3.588288 3.755367 4.602943
V 4.486057 5.172574 3.630494 4.218546 5.488872 3.385327 3.373608 3.571375 4.459963
VI 4.222502 4.881395 3.437052 3.989007 5.185887 3.201415 3.180355 3.348194 4.143948
VII 4.146325 4.793892 3.375923 3.917851 5.093191 3.144321 3.123197 3.287199 4.066799
VIII 4.104214 4.732127 3.32121 3.859229 5.021412 3.096976 3.086388 3.267567 4.081062
IX 4.026496 4.647136 3.265531 3.792799 4.933405 3.043772 3.029741 3.200836 3.984165
X 3.966748 4.559524 3.187936 3.709656 4.831596 2.976622 2.977523 3.172958 4.004309
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TABLE 4.5 Chemical Hardness Values (in eV) as Computed for Molecules of Table 4.2 with First LUMO(1) –HOMO(1), Second 
LUMO(2) –HOMO(2) and Third Order LUMO(3) –HOMO(3) Gaps of Eq. (4.326) with Parameters of Table 4.1 (Putz, 2013)

Molecule η2C η4C η6C ηSP η6T η8T η8P η10P ηSLR

I 5.10387 5.95447 4.239094 4.89965 6.516588 3.908499 3.806245 3.921086 4.834997
II 5.171722 6.025756 4.283151 4.953449 6.58096 3.952722 3.857423 3.985751 4.929261
III 5.035515 5.839345 4.127062 4.783086 6.362192 3.816411 3.746102 3.911156 4.916176
IV 4.756227 5.513655 3.895318 4.515179 6.028988 3.599197 3.529596 3.686762 4.658889
V 4.486057 5.172574 3.630494 4.218546 5.648093 3.361234 3.316702 3.504858 4.514206
VI 4.222502 4.881395 3.437052 3.989007 5.31776 3.18146 3.133223 3.293101 4.188874
VII 4.146325 4.793892 3.375923 3.917851 5.224208 3.124496 3.076372 3.232464 4.111434
VIII 4.104214 4.732127 3.32121 3.859229 5.148952 3.077677 3.040805 3.214284 4.124512
IX 4.026496 4.647136 3.265531 3.792799 5.062797 3.024193 2.983496 3.14678 4.028246
X 3.966748 4.559524 3.187936 3.709656 4.955781 2.957831 2.933139 3.121078 4.046616
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In these conditions, the main Koopmans’ analysis of chemical hardness 
or aromaticity behavior for the envisaged molecules leaves with relevant 
observations:

• In absolutely all cases, analytical or computational, the first two 
molecules, Benzene (I) and Pyrimidine (II) are inversed for their 
chemical hardness/aromaticity hierarchies respecting the bench-
marking Hückel one, meaning that even in the most simple case, say 
2C/{LUMO1-HOMO1}, double substitution of carbon with nitro-
gen increases the ring stability, most probably due to the additional 
pairing of electrons entering the pi-system as coming from the free 
valence of N atoms (equivalently with N pi-valence electrons) in 
molecular ring. This additional pair of electrons eventually affects 
by shielding also the core of the hydrocarbon rings, i.e., the sigma-
system of Pyrimidine (II), in a specific quantum way, not clearly 
accounted by the Hückel theory.

• The same behavior is recorded also for the couple of molecules I 
and III (Pyridine), however, only for the SLR of chemical hardness 
computed with second and the third orders of Koopmans frozen 
spin-orbitals; this suggest the necessary insight the spectral like 
resolution analysis may provide respecting the other forms of finite 
compact differences in chemical hardness computation – yet only 
when it is combined with higher Koopmans HOMO and LUMO 
orbitals.

• In the same line of discussion, only for the second and the third 
Koopmans order and only for the SLR chemical hardness develop-
ment, i.e., the last columns of Tables 4.4 and 4.5, one record simi-
lar reserve order of the molecules 2-Napthol (VII) and 1-Naphtol 
(VIII), with the more aromatic character for the last case when hav-
ing the OH group more closely to the middy of the naphthalene 
structure; it is explained as previously, due to the electronic pair 
of chemical bonding contribution more close to the “core” of the 
system with direct influence to increase the shielding electrons of 
the sigma systems, while leading with smoothly increased stabili-
zation contribution (enlarging also the sigma-pi chemical gap); yet 
this is manifested when all the spectral like resolution complexity 
is considered in chemical hardness expression and only in superior 
Koopmans orders (second and third), otherwise not being recorded. 
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However, this result advocates the meaningful of considering of the 
SLR coupled with superior Koopmans analysis in revealing subtle 
effects in sigma-pi aromatic systems.

• In the rest of cases the Hückel downward hierarchy of Table 4.2 is 
recovered in Tables 4.3–4.5 in a systematic way.

• When going from 2C to SLR chemical hardness analytical forms 
of any of Koopmans orders, on the horizontal axis through the 
Tables 4.3–4.5, one systematically record an increasing of the aver-
age chemical hardness/aromaticity values from 2C to 6T schemes 
of computations while going again down towards SLR scheme of 
Table 4.1.

All in all, one may compare the extreme 2C and SLR outputs of 
Tables 4.3–4.5 for a global view for the Koopmans’ behavior respecting 
various orders and chemical hardness schemes of (compact finite forms) 
computations: the result is graphically presented in Figure 4.4. The anal-
ysis of Figure 4.4 yields a fundamental result for the present study, i.e., 
the practical identity among:

FIGURE 4.4 Representation of the 2C and SLR chemical hardness hierarchies for the set 
of molecules of Table 4.2 upon the first, second and third order of the Koopmans’ theorem 
applications as presented din Tables 4.3–4.5, respectively (Putz, 2013).
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• All Koopmans superior orbitals based chemical hardness 
computations;

• The simplest 2C and the complex SLR analytical forms for com-
pact finite difference schemes of chemical hardness for the superior 
HOMO-LUMO gap extensions;

By contrary to someone expecting the first order of Koopmans theorem 
being more systematic, only in this order 2C result is practically doubled 
respecting SLR counterpart; such double behavior becomes convergent 
when superior Koopmans orders of valence orbitals are considered either 
in simpler or complex forms of 2C and SLR, respectively.

Despite the debating context in which Koopmans theorem is valid, or 
associates with a physical-chemical sense, the present work give some 
insight in this matter by clarifying upon some key features of Koopmans 
analysis, namely:

• The Hartree-Fock spin-orbitals involved in Koopmans’ theorem are 
of computational nature, emerged through solving an eigen-problem 
in a given basis set so that being characterized by a sort of “quan-
tum shift” related with quantum uncertainty when the free system is 
affected by observation – here by computation; so this behavior is 
at its turn computationally naturally and not viewed as a conceptual 
error in structurally assessing a many-electronic structure;

• The Koopmans’ theorem not restrictedly refers to the first ionization 
potential and may be extended to successive ionization potentials 
(and electronic affinities) as far the valence shell is not exhausted 
by the pi-collective electrons, such that the sigma-pi separation may 
be kept reliable and the “frozen spin-orbitals” may be considered 
as such through cancellation of the relaxation effects with the elec-
tronic correlations, both explicitly escaping to Hartree-Fock for-
malism; this was however here emphasized by the appearance of 
the quantum terms of type HOMO HOMO HOMO HOMO1 2 1 2  in 
Eq. (4.328) and LUMO LUMO LUMO LUMO1 2 1 2  in Eq. (4.329) 
which were considered as reciprocal annihilating in chemical hard-
ness’ IP-EA differences in Eq. (4.330) due to symmetrical bonding 
vs. anti-bonding spectra displacements in molecular orbital theory – 
as a simplified version of Hartree-Fock theory;
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• The Koopmans theorem goes at best with chemical harness or 
aromaticity evaluation by means of LUMO-HOMO gaps when they 
manifested surprisingly the same for superior orders of IPs-EAs, this 
way confirming the previous point.

Application on a paradigmatic set of mono and double benzoic rings 
molecules supported these conclusions, yet leaving enough space for 
further molecular set extensions and computational various frameworks 
comparison.

This may lead with the fruitful result according which the Koopmans 
theorem works better when superior HOMO-LUMO frozen spin-orbitals 
are considered, probably due to compensating correlating effects such 
extension implies, see the last section’ analytical discussion. In any case, 
the present molecular illustration of Koopmans’ approximations to chem-
ical harness computation clearly shows that, at least for organic aromatic 
molecules, it works better for superior orders of “freezing” spin-orbitals 
and is not limitative to the first valence orbitals, as would be the common 
belief. Moreover, it was also clear the Koopmans theorem finely accords 
also with more complex ponder of its superior order orbitals in chemi-
cal hardness expansions Eq. (4.326), when subtle effects in lone pair-
ing electrons (since remained orbital is frozen upon successive electronic 
attachment/removals on/from it) or chemical bonding pair of electrons 
influence the aromatic ring core towards increasing its shielding and the 
overall molecular reactivity resistance. All these conceptual and compu-
tational results should be further extended and tested on increased number 
of molecules, enlarging their variety too, as well as by considering more 
refined quantum computational frameworks as the Density Functional 
Theory and (Hartree-Fock) ab initio schemes are currently compared and 
discussed for various exchange-correlation and parameterization limits 
and refutations.

4.6 DENSITY FUNCTIONAL THEORY: OBSERVABLE QUANTUM 
CHEMISTRY

The main weakness of the Hartree-Fock method, namely the lack in cor-
relation energy, is ingeniously restored by the Density Functional method 




