
Chapter 6

Postulates and Theorems
of Quantum Mechanics

6-1 Introduction

The first part of this book has treated a number of systems from a fairly physical view-
point, using intuition as much as possible. Now, armed with the concepts already
developed, the reader should be in a better position to understand the more formal foun-
dation to be described in this chapter. This foundation is presented as a set of postulates.
From these follow proofs of various theorems. The ultimate test of the validity of the
postulates comes in comparing the theoretical predictions with experimental data. The
extra effort required to master the postulates and theorems is repaid many times over
when we seek to solve problems of chemical interest.

6-2 The Wavefunction Postulate

We have already described most of the requirements that a wavefunction must satisfy: ψ

must be acceptable (i.e., single-valued, nowhere infinite, continuous, with a piecewise
continuous first derivative). For bound states (i.e., states in which the particles lack the
energy to achieve infinite separation classically) we require that ψ be square integrable.
So far we have considered only cases where the state of the system does not vary with
time. For much of quantum chemistry, these are the cases of interest, but, in general, a
state may change with time, and ψ will be a function of t in order to follow the evolution
of the system.

Gathering all this together, we arrive at

Postulate I Any bound state of a dynamical system of n particles is described as
completely as possible by an acceptable, square-integrable function
�(q1, q2, . . . q3n,ω1,ω2, . . . ,ωn, t), where the q’s are spatial coordi-
nates, ω’s are spin coordinates, and t is the time coordinate. �∗� dτ is
the probability that the space-spin coordinates lie in the volume element
dτ(≡ dτ1dτ2 · · ·dτn) at time t , if � is normalized.

For example, suppose we have a two-electron system in a time-dependent state
described by the wavefunction �(x1, y1, z1,ω1, x2, y2, z2,ω2, t). The spin coordinates
ω would each be some combination of spin functions α and β. If we integrate �∗�

over the spin coordinates of both electrons, we are left with a spin-free density function.
Call it ρ(x1, y1, z1, x2, y2, z2, t) ≡ ρ(v1, v2, t). We interpret ρ(v1, v2, t) dv1 dv2 as
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the probability that electron 1 is in dv1 (i.e., between x1 and x1 + dx, y1 and y1 +
dy, and z1 and z1 + dz) and electron two is in dv2 at time t . If we now integrate
over the coordinates of electron 2, we obtain a new density function, ρ′(v1, t), which
describes the probability of finding electron 1 in various volume elements at various
times regardless of the position of electron 2.

6-3 The Postulate for Constructing Operators

Much of the substance of the second postulate is already familiar. We earlier used
arguments based on de Broglie waves to construct hamiltonian operators. We then
noted that the kinetic energy part of the operators can be identified with a classical
term like p2

x/2m through the relation px ↔ (h̄/i)∂/∂x. The potential energy terms
in the hamiltonian operators are completely classical, however. Thus, we could have
constructed the quantum mechanical hamiltonians by writing down the classical energy
expressions in terms of momenta and position, and then replacing every momentum term
by the appropriate partial differential operator. This is an example of the use of part c of:

Postulate II To every observable dynamical variable M there can be assigned a linear
hermitian operator M̂ . One begins by writing the classical expression,
as fully as possible in terms of momenta and positions. Then:

a) If M is q or t , M̂ is q or t . (q and t are space and time coordinates.)

b) If M is a momentum, pj , for the j th particle, the operator is
(h̄/i)∂/∂qj , where qj is conjugate to pj (e.g., xj is conjugate to pxj ).

c) If M is expressible in terms of the q’s, p’s and t , M̂ is found by
substituting the above operators in the expression for M in such a way
that M̂ is hermitian.

The reason for specifying that M̂ must be hermitian is that the eigenvalues of a
hermitian operator must be real numbers.1 We shall discuss this and other aspects of
hermiticity (including its definition) later in this chapter.

As an explicit example of this procedure, we reconsider the hydrogen atom. Assum-
ing a fixed nucleus (infinite inertia), the classical expression for the total energy of the
system is

Eclassical = (1/2me)(p
2
x + p2

y + p2
z ) − e2/

[
4πε0(x2 + y2 + z2)1/2]

where the first term is just the kinetic energy of the electron and the second term is the
electrostatic potential energy. The coordinate origin is on the nucleus. Application of
postulate II retains the position variables x, y, and z of the potential term unchanged,
but replaces px by (h̄/i) ∂/∂x, etc.:
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1In this text (and in quantum chemistry in general) a caret indicates an operator and not a unit vector quantity
as in classical physics.
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Thus, we arrive at

Ĥ = −h2

8π2me
∇2 − e2

4πε0(x2 + y2 + z2)1/2

and we are now free to transform Ĥ to other coordinate systems (such as r, θ,φ) if
we wish.

6-4 The Time-Dependent Schrödinger Equation Postulate

We have discussed only cases where neither the hamiltonian Ĥ nor ψ is time dependent.
In those cases we required that ψ be an eigenfunction of Ĥ . In the more general case
in which � and Ĥ are time dependent,2 a different requirement is imposed by

Postulate III The state functions (or wavefunctions) satisfy the equation

Ĥ � (q, t) = −h̄

i

∂

∂t
� (q, t) (6-1)

where Ĥ is the hamiltonian operator for the system.

We should check to see if this is consistent with the time-independent Schrödinger
equation we have been using. Suppose that the hamiltonian is time independent. Let
us see if a solution to Eq. (6-1) exists when �(q, t) is separated into a product of space-
and time-dependent functions: �(q, t) = ψ(q)f (t). Inserting this into Eq. (6-1) gives

Ĥψ(q)f (t) = −h̄

i

∂

∂t
ψ(q)f (t) (6-2)

Dividing by ψ(q)f (t) gives

Ĥψ(q)

ψ(q)
= (−h̄/i)(∂/∂t)f (t)

f (t)
(6-3)

Since each side of Eq. (6-3) depends on a different variable, the two sides must equal
the same constant, which we call E. This gives

Ĥψ(q) = Eψ(q) (6-4)

and

−h̄

i

d

dt
f (t) = Ef (t) (6-5)

The first of these equations is just the time-independent Schrödinger equation we have
been using. The second equation has the solution f (t)=A exp(−iEt/h̄). Hence, f ∗f

equals a constant, and so �∗� =ψ∗ψf ∗f ∝ψ∗ψ . Since f has no effect on energy or
particle distribution, we can ignore it in dealing with stationary states. The situation is
analogous to the case of standing waves discussed in Chapter 1.

2Hˆ and � symbolize time dependence; Ĥ and ψ symbolize time independence.
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Note that while we have shown that solutions may exist in which � is separable, this
does not mean that every solution of Eq. (6-1) with Ĥ = Ĥ is separable (i.e., stationary).
We can imagine a situation where a system in a stationary state is suddenly perturbed
to produce a new time-independent hamiltonian. � will change as the system adjusts
to this new situation, giving us a case where the hamiltonian is time-independent (after
the perturbation, at least) but � is not a stationary state function. The way in which �

evolves in time is governed by Eq. (6-1).

EXAMPLE 6-1 Show that the average energy for a nonstationary state of the hydro-
gen atom is conserved as the system evolves, if Ĥ is not time-dependent.

SOLUTION � We choose a simple example:

ψ = 1√
2
{ψ1s exp(it/2h̄) + ψ2s exp(it/8h̄)}

where each exponential equals exp(−iEt/h̄). Then

〈E〉 =
∫

ψ∗Ĥψ dv dt = 1

2

∫
ψ∗

1s exp(−it/2h̄)Ĥψ1s exp(it/2h̄) dv dt

+ the analogous 2s2s term +1s2s and 2s1s cross terms. Since Ĥ does not operate on functions
of t, the exponentials in each of the first two integrals can join together, giving exp(0)=1. So time-
dependence disappears from the first two integrals, and they become respectively equal to − 1

2 a.u.,

and − 1
8 a.u. Dependence on time does not disappear from the cross-term integrals, but that doesn’t

matter because the integration over space gives zero in each case, due to orbital orthogonality.
Thus, < E >= 1

2 (− 1
2 a.u.) + 1

2 (− 1
8 a.u.) = − 5

16 a.u., which has no time-dependence. �

6-5 The Postulate Relating Measured Values
to Eigenvalues

The second postulate indicated that every observable variable of a system (such as
position, momentum, velocity, energy, dipole moment) was associated with a hermitian
operator. The connection between the observed value of a variable and the operator is
given by

Postulate IV Any result of a measurement of a dynamical variable is one of the eigen-
values of the corresponding operator.

Any measurement always gives a real number, and so this postulate requires that
eigenvalues of the appropriate operators be real. We will prove later that hermitian
operators satisfy this requirement.

If we measured the electronic energy of a hydrogen atom (the negative of its ion-
ization energy), we could get any of the allowed eigenvalues (−1/2n2 a.u.) but no
intermediate value. What if, instead, we measured the distance of the electron from the
nucleus. By postulate II, the operator for this property is just the variable r itself. That
is, r̂ = r . Hence, we need to consider the eigenvalues of r in the equation

r δ(r, θ,φ) = λδ(r, θ,φ) (6-6)
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where δ is an eigenfunction and λ is a real number (corresponding to the distance of
the electron from the nucleus). We can rewrite this equation as

(r − λ)δ(r, θ,φ) = 0 (6-7)

This form makes it more apparent that the function δ must vanish at all points in space
except those where r = λ. But λ is an eigenvalue of r and hence is a possible result
of a measurement. Thus, we see that postulate IV implies some connection between
a measurement of, say, r = 2 a.u. and an eigenfunction of r that is finite only at
r = 2 a.u. We symbolize this eigenfunction δ(r − 2 a.u.), this “delta function” being
zero whenever the argument is not zero. If we measured the electron’s position to be
at r = 5.3 a.u., the corresponding eigenfunction would be δ(r − 5.3 a.u.)—a function
that is zero everywhere except in a shell of infinitesimal thickness at r = 5.3 a.u. If
instead we measured the point in space of the electron, rather than just the distance
from the nucleus, and found it to be r0, θ0, φ0, then the corresponding eigenfunction
of the position operator would be δ(r − r0)δ(θ − θ0)δ(φ − φ0). This function vanishes
everywhere except at r0, θ0, φ0.

It is evident that any value of λ from zero to infinity in Eq. (6-7) may be chosen
without spoiling the ability of δ to serve as an eigenfunction of r . This means that,
unlike the energy measurement, the measurement of the distance of the electron from
the nucleus can have any value.

The eigenfunctions of the position operator are called Dirac delta functions. They
are “spike” functions having infinitesimal width. They are normalized through the
equation

∫
δ (x − x0) dx = 1 (6-8)

where the integration range includes x0.3 On first acquaintance, these functions seem
mathematically peculiar, but they make physical sense in the following way. One can
interpret the actual measurement of position as a process that forces the particle to
acquire a certain position at some instant. At that instant, ψ2 for the system (now
perturbed by the measuring process) ought to give unit probability for finding the
particle at that point (where it definitely is) and zero probability elsewhere, and this is
just what the Dirac delta function does.4

Postulate IV, then, is in accord with a picture wherein the process of measurement
forces the measured system into an eigenstate for the appropriate operator, giving the
corresponding eigenvalue as the measurement. This definition of “measurement” is
somewhat restrictive and can be deceptive. Often scientists refer to measurements
that are really measurements of average values rather than eigenvalues. This point is
discussed further below.

3The reader should avoid confusing the Dirac delta function δ(x −x0) with the Kronecker delta δi,j encountered
earlier. They are similar in that both vanish unless x = x0 in the former and i = j in the latter. But they differ
in that the value of δi,j is definite (unity) while the value of δ(x0 − x0) is not defined. The Dirac delta function
has definite value only in integrated expressions like Eq. (6-8). The spin functions α and β may be thought of as
Dirac delta functions in the spin “coordinate” ω. The Dirac delta function is admittedly unusual, and one tends to
be uneasy with it at first. This function is important and useful in quantum mechanics. However, since we will
make almost no use of it in this text, we will not develop the topic further.

4Notice that Eq. (6-8) does not involve δ∗δ, but merely δ. Because δ is nonzero only at one point, δ∗δ is likewise
nonzero only at the same point. δ and δ∗δ are therefore not independent functions. It is convenient to view the
δ function as both the eigenfunction for the position operator and also as the probability distribution function for
the particle.
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6-6 The Postulate for Average Values

Suppose that we had somehow prepared a large number of hydrogen atoms so that they
were all in the same, known, stationary state. Then we could measure the distance of
the electron from the nucleus once in each atom and average these measurements to
obtain an average value. We have already indicated that this average would be given
by the sum of all the r values, each multiplied by its frequency of occurrence, which is
given by ψ2 dv if ψ is normalized. Since r is a continuous variable, the sum becomes
an integral. This is the content of

Postulate V When a large number of identical systems have the same state function
ψ , the expected average of measurements on the variable M (one mea-
surement per system) is given by

Mav =
∫

ψ∗M̂ψ dτ

/∫
ψ∗ψ dτ (6-9)

The denominator is unity if ψ is normalized.
It is important to understand the distinction between average value and eigenvalue

as they relate to measurements. A good example is the dipole moment. The dipole
moment operator for a system of n charged particles is µ = ∑n

i=1 ziri where zi is the
charge on the ith particle and ri is its position vector with respect to an arbitrary origin.
(We get this by writing the classical formula and observing that momentum terms
do not appear. Hence, the quantum-mechanical operator is the same as the classical
expression.) What will the eigenfunctions and eigenvalues of µ̂ be like?

The charge zi is only a number, while ri is a position operator, which has Dirac
delta functions as eigenfunctions. For a hydrogen atom, one eigenfunction of ri would
be a delta function at r = 1 a.u., θ = 0, φ = 0. The corresponding eigenvalue for µ̂

would be the dipole moment obtained when a proton and an electron are separated by
1 a.u., clearly a finite number. But “everybody knows” that an unperturbed atom in a
stationary state has zero dipole moment. The difficulty is resolved when we recognize
that measurement of a variable in postulates IV and V means measuring the value of
a variable at a given instant. Hence, we must distinguish between the instantaneous
dipole moment of an atom, which can have any value from among the eigenvalues of
µ̂ and the average dipole moment, which is zero for the atom. In everyday scientific
discussion, the term “dipole moment” is usually understood to refer to the average
dipole moment. Indeed, the usual measurements of dipole moment are measurements
that effectively average over many molecules or long times (in atomic terms) or both.

6-7 Hermitian Operators

Let φ and ψ be any square-integrable functions and Â be an operator, all having the
same domain. Â is defined to be hermitian if∫

ψ∗Âφdv =
∫

φÂ∗ψ∗dv (6-10)

The integration is over the entire range of each spatial coordinate. Recall that the
asterisk signifies reversal of the sign of i in a complex or imaginary term. The hermitian
property has important consequences in quantum chemistry.
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As an example of a test of an operator by Eq. (6-10), let us take the ψ and φ to
be square-integrable functions of x and Â to be i(d/dx). Then the left-hand side of
Eq. (6-10) becomes, upon integration by parts,

(6-11)

Since ψ and φ are square integrable, they (and their product) must vanish at infinity,
giving the zero term in Eq. (6-11). We now write out the right-hand side of Eq. (6-10):

∫ +∞

−∞
φ(i d/dx)∗ψ∗dx = −i

∫ +∞

−∞
φ(dψ∗/dx)dx (6-12)

where the minus sign comes from carrying out the operation indicated by the aster-
isk. Equation (6-12) is equal to Eq. (6-11), and so the operator i(d/dx) is hermitian.
Since the effect of i was to introduce a necessary sign reversal, it is apparent that the
equality would not result for Â = d/dx. Clearly, any hermitian operator involving a
first derivative in any Cartesian coordinate must contain the factor i. The operators for
linear momenta (Chapter 2) are examples of this.

It is important to realize that Eq. (6-10) does not imply that ψ∗Âφ = φÂ∗ψ∗.
A simple example will make this clearer. Let Â be the hydrogen atom hamiltonian,
Ĥ = − 1

2∇2 − 1/r , and let φ be the 1s eigenfunction: φ = (1/
√

π) exp(−r). Also, let

ψ = √
8/π exp(−2r) which is not an eigenfunction of Ĥ . Then, since Ĥφ = − 1

2 φ,

ψ∗Ĥφ = −1

2
ψ∗φ (6-13)

But

φH ∗ψ∗ = φ

[
−1

2
(1/r2)(d/dr)r2(d/dr) − 1/r

]√
8/π exp(−2r) (6-14)

= φ [(1/r) − 2]
√

8/π exp(−2r) = [(1/r) − 2] ψ∗φ (6-15)

(Since ψ has no θ or φ dependence, the parts of Ĥ ∗ that include ∂/∂θ and ∂/∂φ have
been omitted in Eq. (6-14).) Here we have two functions, − 1

2 ψ∗φ and [(1/r)−2]ψ∗φ.
They are obviously different. However, by Eq. (6-10), their integrals are equal since
Ĥ is hermitian.

6-8 Proof That Eigenvalues of Hermitian Operators
Are Real

Let Â be a hermitian operator with a square-integrable eigenfunction ψ . Then

Âψ = aψ (6-16)

Each side of Eq. (6-16) must be expressible as a real and an imaginary part. The real
parts must be equal to each other and so must the imaginary parts. Taking the complex
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conjugate of Eq. (6-16) causes the imaginary parts to reverse sign, but they remain
equal. Therefore, we may write

Â∗ψ∗ = a∗ψ∗ (6-17)

We multiply Eq. (6-16) from the left by ψ∗ and integrate over all spatial variables:

∫
ψ∗Âψ dv = a

∫
ψ∗ψ dv (6-18)

Similarly, we multiply Eq. (6-17) from the left by ψ and integrate:

∫
ψÂ∗ψ∗dv = a∗

∫
ψψ∗ dv (6-19)

Since Â is hermitian, the left-hand sides of Eqs. (6-18) and (6-19) are equal by definition
(Eq. 6-10). Therefore, the right-hand sides are equal, and their difference is zero:

(a − a∗)

∫
ψ∗ψ dv = 0 (6-20)

Since ψ is square integrable the integral cannot be zero. Therefore, a − a∗ is zero,
which requires that a be real.

6-9 Proof That Nondegenerate Eigenfunctions of a
Hermitian Operator Form an Orthogonal Set

Let ψ and φ be two square-integrable eigenfunctions of the hermitian operator Â:

Âψ = a1ψ (6-21)

Â∗φ∗ = a2φ∗ (6-22)

Multiplying Eq. (6-21) from the left by φ∗ and Eq. (6-22) from the left by ψ , and
integrating gives

∫
φ∗Âψ dv = a1

∫
φ∗ψ dv (6-23)

∫
ψÂ∗φ∗ dv = a2

∫
ψφ∗ dv (6-24)

The left sides of Eqs. (6-23) and (6-24) are equal by (6-10), and

(a1 − a2)

∫
φ∗ψ dv = 0. (6-25)

If a1 �= a2, the integral vanishes. This proves that nondegenerate eigenfunctions are
orthogonal.
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EXAMPLE 6-2 It has been shown (Section 6-7) that i(d/dx) is a hermitian operator.
We know that it has eigenfunctions exp(±ikx) with eigenvalues ±k, which are
real. So far, so good. However, this operator also has eigenfunctions exp(±kx),
with eigenvalues ±ik, which are imaginary. This appears to violate the proof
that eigenvalues of hermitian operators are real. Explain why neither of these
eigenfunction sets is covered by the proof of section 6-8, and how one of them
manages to obey the rule anyway.

SOLUTION � The test for Hermiticity requires that iψ∗φ|+∞−∞ = 0. If φ is ψ , and if ψ is
square-integrable, this condition is satisfied, because ψ∗ψ vanishes at ±∞, giving 0 − 0 = 0. But
neither of the exponential functions given above is square-integrable: They are both unequal to
zero at ±∞, so they both fall outside of the proof as given. Despite this, exp(±ikx) does have
real eigenvalues, leading us to look more closely. Is it the case that iψ∗ψ |+∞−∞ = 0 for this set of
functions, even though they do not vanish at infinity? It is indeed, since ψ∗ψ = 1, giving i − i = 0
for this term. Thus we see that our requirement that ψ be square integrable is more restrictive than
what is necessary, namely that iψ∗ψ |+∞−∞ = 0. Note that the other set of exponentials, exp(±kx),
leads to iψ∗ψ = i exp(±2kx), which does not produce a value of zero when values at x = ∞ and
x =−∞ are subtracted. Note also that the functions exp(±ikx) are orthogonal for different values
of k, whereas the functions exp(±kx) are not. �

The point of the above example is that all of our proofs about eigenvalues or
eigenfunctions of hermitian operators refer to cases where the eigenfunctions satisfy
the requirement that iψ∗ ψ |+∞−∞ = 0. Square-integrability guarantees this, but some
nonsquare-integrable sets of functions can satisfy it too. A hermitian operator can have
eigenfunctions that are associated with complex or imaginary eigenvalues, but these
must result from eigenfunctions that do not satisfy the requirement.

6-10 Demonstration That All Eigenfunctions
of a Hermitian Operator May Be Expressed
as an Orthonormal Set

If a1 =a2, Eq. (6-25) is satisfied even when the integral is finite. Therefore, degenerate
eigenfunctions need not be orthogonal. But they must be linearly independent or
else they are the self-same function (to within a multiplicative constant), and if they
are linearly independent, they can be converted to an orthogonal pair. Hence, it is
always possible to express the degenerate eigenfunctions of a hermitian operator as
an orthogonal set (and, as we have just proved, it is necessary that nondegenerate
eigenfunctions be orthogonal). Furthermore, the functions must be square integrable,
hence normalizable. In general, then, we are able to assume that all of the eigenfunctions
of a hermitian operator can be expressed as an orthonormal set.

One way to orthogonalize two nonorthogonal, linearly independent functions (which
may or may not be eigenfunctions) will now be demonstrated. Let the functions be ψ

and φ (assumed normalized) and the integral of their product have the value S:
∫

ψ∗φ dv = S (6-26)
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We keep one of the functions unchanged, say ψ , and let φ′ ≡φ −Sψ be our new second
function. ψ and φ′ are orthogonal since

∫
ψ∗φ′ dv =

∫
ψ∗(φ − Sψ)dv =

∫
ψ∗φ dv

︸ ︷︷ ︸
S

− S

∫
ψ∗ψ dv

︸ ︷︷ ︸
1

= 0 (6-27)

(The new function φ′ needs to be renormalized.) This process, known as Schmidt
orthogonalization, may be generalized and applied sequentially to any number of lin-
early independent functions.

EXAMPLE 6-3 Two normalized 1s AOs are located on nearby nuclei, A and B, and
overlap each other enough so that

∫
1sA1sB dv =0.500. Construct a function from

these two that is orthogonal to 1sA and is normalized.

SOLUTION � 1s′
B

= 1sB − 0.5 · 1sA is orthogonal to 1sA. It is not yet normalized because
∫

(1s′
B)2 dv =

∫
(1s2

B + 0.25 · 1s2
A − 2 · 0.5 · 1sA1sB)dv

= 1 + 0.25 − 2 · 0.5 · 0.5 = 0.75 = 3

4
.

So the normalized function we seek is 2√
3
(1sB − 0.5 · 1sA). �

6-11 Proof That Commuting Operators Have
Simultaneous Eigenfunctions

Â and B̂ are commuting operators if, for the general square-integrable function f,

ÂB̂f = B̂Âf . This can be written (ÂB̂ − B̂Â)f =0, which requires that ÂB̂ − B̂Â= 0̂.
(0̂ is called the null operator. It satisfies the equation, 0̂f = 0.) This difference of
operator products is called the commutator of Â and B̂ and is usually symbolized5 by
[Â, B̂]. If the commutator [Â, B̂] vanishes, then Â and B̂ commute.

We will now prove an important property of commuting operators, namely, that they
have “simultaneous” eigenfunctions (i.e., that a set of eigenfunctions can be found for
one of the operators that is also an eigenfunction set for the other operator). Let βi be
the eigenfunctions for B̂ : B̂βi = biβi . For the moment, assume all the numbers bi are
different (i.e., the eigenfunctions βi are nondegenerate). Let [Â, B̂] = 0̂. Then

B̂(Âβi) = ÂB̂βi = Âbiβi = bi(Âβi) (6-28)

The parentheses emphasize that the function obtained by operating on βi with Â is
an eigenfunction of B̂ with eigenvalue bi . But that function can only be a constant
times βi itself. Hence, for nondegenerate βi we have that Âβi = cβi , and so βi is an
eigenfunction of Â. This proves that the nondegenerate eigenfunctions for one operator
will also be eigenfunctions for any other operators that commute with it.

5Other less common conventions are [Â, B̂]− and (Â, B̂).
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If βi is degenerate with other functions βi,k , then we can only go so far as to say that
Âβi = ∑

k ckβi,k , for this general linear combination is an eigenfunction of B̂ having
eigenvalue bi . But if this is so, then βi is evidently not necessarily an eigenfunction of
Â. We shall not prove it here, but it is possible to show that one can always find some
linear combinations of βi,k to produce a set of new functions, β ′

i , that are eigenfunctions
of Â (and remain eigenfunctions of B̂ as well). Therefore we can state that, if Â

and B̂ commute, there exists a set of functions that are eigenfunctions for Â and B̂

simultaneously.
An example of this property occurred in the particle-in-a-ring system described

in Chapter 2. The hamiltonian and angular momentum operators commute for that
system. There we found one set of functions, the trigonometric functions, that are
eigenfunctions for Ĥ but not for L̂z . But by mixing the energy-degenerate sines and
cosines we produced exponential functions that are eigenfunctions for both of these
operators.

Another example concerns the familiar symmetry operations for reflection, rotation,
etc. If one of these operations, symbolized R̂, commutes with the hamiltonian, then
we should expect there to be a set of eigenfunctions for Ĥ that are simultaneously
eigenfunctions for R̂. It was proved in Chapter 2 that this means that nondegenerate
eigenfunctions must be symmetric or antisymmetric with respect to R̂.

A symmetry operator that leaves Ĥ unchanged can be shown to commute with Ĥ .
That is, if R̂Ĥ = Ĥ , then R̂Ĥf = Ĥ R̂f , where f is any function. To show this, let R̂

be, say, a reflection operator. Then R̂ operates on functions and operators to its right
by reflecting the appropriate coordinates: R̂f (q) = f (Rq). If Ĥ is invariant under
reflection R̂, then H(q) = H(Rq), and it follows that R̂Ĥ (q)f (q) = Ĥ (Rq)f (Rq) =
Ĥ (q)f (Rq) = Ĥ (q)R̂f (q), and so R̂Ĥf = Ĥ R̂f . We shall formally develop the
ramifications of symmetry in quantum chemistry in Chapter 13.

The existence of simultaneous eigenfunctions for various operators has important
ramifications for the measurement of a system’s properties. This is discussed in
Section 6-15.

6-12 Completeness of Eigenfunctions of a
Hermitian Operator

In Chapter 3 we discussed the concept of completeness in connection with the power
series expansion of a function. Briefly, a series of functions6 {φ} having certain restric-
tions (e.g., all derivatives vary smoothly) is said to be complete if an arbitrary function
f having the same restrictions can be expressed in terms of the series7

f =
∑

i

ciφi (6-29)

Proofs exist that certain hermitian operators corresponding to observable properties
have eigenfunctions forming a complete set in the space of well-behaved (continuous,

6A symbol in braces is frequently employed to represent an entire set of functions.
7Equation (6-29) is overly restrictive in that it requires that the function and the series have identical values at

every point, whereas it is possible for them to disagree at points of zero measure. However, at the level of this
book, we can ignore this distinction and use Eq. (6-29) without encountering difficulty.
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single-valued, square-integrable) functions. These proofs are difficult and will not be
given here.8 Instead we shall introduce

Postulate VI The eigenfunctions for any quantum mechanical operator corresponding
to an observable variable constitute a complete set. (Furthermore, we
have seen in Section 6-10 that we can assume that this set has been made
orthonormal.)

We will now use this property to investigate further the nature of the average value of
an operator. Let the system be in some state ψ (normalized), not an eigenfunction of M̂ .
However, M̂ possesses eigenfunctions {µ} that must form a complete set. Therefore,
we can express ψ in terms of µ’s:

ψ =
∑

i

ciµi (6-30)

Now we calculate the average value of M for the state ψ :

Mav =
∫

ψ∗M̂ψdv =
∫ ∑

i

c∗
i µ∗

i M̂
∑

j

cj µj dv

=
∑

i

∑

j

c∗
i cj

∫
µ∗

i M̂µj dv (6-31)

But M̂µi = miµi , and so

Mav =
∑

i

∑

j

c∗
i cj

∫
µ∗

i mj µj dv =
∑

i

∑

j

c∗
i cj mj

∫
µ∗

i µj dv (6-32)

But we are assuming that {µ} is an orthonormal set, and so

Mav =
∑

i

∑

j

c∗
i cj mj δij =

∑

i

c∗
i cimi (6-33)

What does this expression mean? Each measurement of the property corresponding
to M̂ must give one of the eigenvalues mi (postulate IV) and the average of many
such measurements must be Mav. Equation (6-33) states how the individual measure-
ments must be weighted to give the average, so it follows that each ci

∗ci is a mea-
sure of the relative frequency for observing the corresponding mi . Putting it another
way, the absolute squares of the mixing coefficients in Eq. (6-30) give the probabil-
ities that a measurement of the variable M will give the corresponding eigenvalue.
For example, if ψ happens to be equal to (1/

√
2)µ1 + (1/

√
2)µ3, it follows that

Mav = (1/2)m1 + (1/2)m3.

EXAMPLE 6-4 What is the average value for the z-component of orbital angular
momentum for the normalized function φ = (1/

√
5)(ψ2s + 2 · ψ2p+1)?

SOLUTION � Since we know that the 2s and 2p+1 eigenfunctions have z-components of angu-
lar momentum of 0 and +1 respectively, we can say at once that p̄z = 1

5 · 0 + 4
5 · 1 = 0.8 a.u.

�

8See, e.g., Kemble [1, Section 25].
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6-13 The Variation Principle

Many of the calculations of quantum chemistry are based on the Rayleigh-Ritz variation
principle which states: For any normalized, acceptable function φ,

Hav ≡
∫

φ∗Ĥφ dτ ≥ E0 (6-34)

where E0 is the lowest eigenvalue of Ĥ .
This statement is easily proved. We expand φ in terms of {ψi}, the complete,

orthonormal set of eigenfunctions of Ĥ :

φ =
∑

i

ciψi (6-35)

As in the preceding section, this leads to
∫

φ∗Ĥφdτ =
∑

i

c∗
i ciEi (6-36)

Now c∗
i ci is never negative, and so Eq. (6-36) is merely a weighted average of the

eigenvalues Ei . Such an average can never be lower than the lowest contributing
member and the principle is proved.

The variation principle is sometimes stated in an equivalent way by saying that the
average value of Ĥ over φ is an upper bound for the lowest eigenvalue of Ĥ . Following
the approach of the example at the end of the previous section, if φ for a hydrogen atom
happens to be a function equal to (1/

√
2)ψ1s + (1/

√
2)ψ2s , the average energy for φ

is (1/2)E1s + (1/2)E2s , which obviously lies above the lowest eigenvalue E1s .

6-14 The Pauli Exclusion Principle

We have already discussed the Pauli exclusion principle in Chapter 5. In its most
general form, this is:

Postulate VII ψ must be antisymmetric (symmetric) for the exchange of identical
fermions (bosons).

6-15 Measurement, Commutators, and Uncertainty

If we measure the exact position of the electron in a hydrogen atom, we force it into
a state having a Dirac delta function as its wavefunction. Since this function is also
an eigenfunction for the dipole moment operator, it follows that we also know the
(instantaneous) dipole moment for the atom at that instant. In effect, measuring position
measures dipole moment too. But the delta function is not an eigenfunction for the
hamiltonian operator of the atom, and so we have not simultaneously measured the
electronic energy of the atom.

We have earlier seen that an eigenfunction for one operator can serve also as eigen-
function for another operator when the operators commute. In the above example, the
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operators for position and dipole moment commute with each other but not with the
hamiltonian operator. This leads us to recognize that we can simultaneously measure
values for two variables only if their operators commute.

Let us consider this situation more deeply by imagining two successive measure-
ments on a hydrogen atom, one immediately following the other. If we first measure
position and find r = 2.0 a.u., and then measure dipole moment, we will get the value
(µ=2.0 a.u.) corresponding to the electron being at r =2.0 a.u. That is where we found
it in the first measurement, and it has not had time to move elsewhere before the second
measurement. If we immediately follow with yet another position measurement, the
electron will still be found at r =2 a.u. (We are imagining that no time elapses between
measurements, which is a limit we cannot actually achieve. In the present case, though,
since measurement of r is also a measure of µ, both measurements are done at once, so
this is really not a problem.) Hence, it makes sense to say that we know these two values
“simultaneously.” However, if we first measure position and then measure energy, we
find something very different. Suppose that we find r =2 a.u. and then, in a subsequent
measurement, E = −1/2 a.u. (E must, after all, be an eigenvalue of Ĥ , according
to postulate IV.) We know that the eigenfunction during the first measurement was
δ(r − 2 a.u.), and that during the second measurement was a 1s AO. If we immediately
do yet another position measurement, we can find any value of r (with probabilities
given by 4πr2ψ2

1s dr). The processes of measuring position and energy are incompati-
ble in the sense that there is no single function that can describe the situation that exists
during both measurements. The energy-measuring process can be pictured as forcing a
reconstruction of the wavefunction in such a manner that it no longer corresponds to a
particular position, while measurement of position forces a state function that does not
correspond to a particular energy. (In this case, separate measurements would really
be necessary, so the impossibility of doing a second measurement truly immediately
after the first must be recognized. Indeed, one has to allow for the fact that finding an
electron in one place and then at some other place must imply a lapse of time permitting
the electron to travel.)

The reader may suspect that there is some connection between commutators and the
uncertainty principle, and this is indeed the case. It can be shown9 that the product
of widths of simultaneous measurements (i.e., the uncertainty in their values) of two
variables satisfies the relation

�a · �b ≥ 1

2

∣∣∣∣
∫

ψ∗ [
Â, B̂

]
ψdτ

∣∣∣∣ (6-37)

where ψ is normalized, and the absolute value |X| is defined as the positive square
root of X∗X. If A and B are conjugate variables, such as position and momentum,
Eq. (6-37) becomes �a · �b ≥ h̄/2, which is Heisenberg’s uncertainty relation. If Â

and B̂ commute, the right-hand side of Eq. (6-37) vanishes, and the values of both
variables may, in theory, be simultaneously known exactly.

Among the properties of greatest interest in molecular quantum mechanics are
energy, symmetry, and electron orbital angular momentum because, for many
molecules, some of these operators commute. Thus, if we know that an oxygen
molecule is in a nondegenerate stationary electronic state, we know that it is possible
to characterize that state by a definite value of the orbital angular momentum along

9See Merzbacher [2, Section 10-5].
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the internuclear axis. Also, we know that the wavefunction must be symmetric or
antisymmetric for inversion through the molecular midpoint.

6-16 Time-Dependent States

Much of quantum chemistry is concerned with stationary states, for which � is a
product of a space term ψ (an eigenfunction of Ĥ ) and a time-dependent factor
exp(−iEt/h̄), which we usually ignore because it has no effect on particle probability
distribution. Sometimes, however, it becomes necessary to consider time-dependent
states. In this section we illustrate how some of these may be treated.

There are two types of situation to distinguish. One is situations where the potential
is changing as a function of time, and hence the hamiltonian operator is time dependent.
An example is a molecule or atom in a time-varying electromagnetic field. The other
is situations where the potential and hamiltonian operator do not change with time,
but the particle is nonetheless in a nonstationary state. An example is a particle that is
known to have been forced into a nonstationary state by a measurement of its position.
We deal here with the second category.

As our first example, consider a particle in a one-dimensional box with infinite walls.
Suppose that we measure the particle’s position and find it in the left side of the box
(i.e., between x = 0 and L/2; we will be more specific shortly) at some instant that
we take to be t = 0. We are interested in knowing what this implies about a future
measurement of the particle’s position.

Our knowing that the particle is on the left side at t = 0 means that the wavefunction
for this state is not one of the time-independent box eigenfunctions we saw in Chapter 2,
because those all predict equal probabilities for finding the particle on the two sides
of the box. If the state function is not stationary, it must be time dependent, and it
must satisfy Schrödinger’s time-dependent equation (6-1). We have, then, that the state
function is time dependent, and that �∗� ≡ |�|2 is zero everywhere on the right side
of the box when t = 0. (We have not yet been specific enough to describe |�|2 in detail
on the left side of the box.)

Schrödinger’s time-dependent equation (6-1) is not an eigenvalue equation. How-
ever, Eq. (6-2) shows that Schrödinger’s time-dependent equation is satisfied by time-
independent eigenfunctions of Ĥ if they are multiplied by their time-dependent factors
f (t) = exp(−iEt/h̄). Furthermore, Eq. (6-2) continues to be satisfied if the term
ψ(q)f (t) is replaced by a sum of such terms. (See Problem 6-9.) This means that
we can seek to express the time-dependent state function, �(x, t), as a sum of time-
independent box eigenfunctions as long as each of these is accompanied by its time
factor f (t). When t = 0, all the factors f (t) equal unity, so at that point in time �

becomes the same as the sum of box eigenfunctions without their time factors.
Our strategy, then, is to find a linear combination of time-independent box eigen-

functions, ψn, that describe � when t = 0. This is easy to do because the time factors
are all equal to unity. Once we have found the proper mixture of ψn, we multiply each
by its time factor and then observe the behavior of |�|2 as t increases.

In the case of our particle-in-a-box example, we can start with a very simple approx-
imation to ψ at t = 0 by taking a 50–50 mixture of ψ1 and ψ2:

�(x, t) = (1/
√

2)
[
ψ1 exp(−iE1t/h̄) + ψ2 exp(−iE2t/h̄)

]
(6-38)
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Figure 6-1 � Stationary eigenfunctions (n=1, 2) for the particle in a box and their normalized sum.

We have included the functions f (t), even though they equal unity when t =0, because
they are needed to make �(x, t) a solution to Schrödinger’s equation (6-1) and because
they will inform us of the nature of � at later times.

We choose this pair of functions because, when t = 0, both are positive on the left,
but they differ in sign on the right, giving us some cancellation there. (See Fig. 6-1.)
Obviously, we have not succeeded in describing a function that has no probability
density on the right, but we already have a definite imbalance in that direction. (It is
not difficult to see that some ψ3 with a positive coefficient should help remove much
of the remaining probability density on the right.)

Now we are in a position to examine this |�|2 as time progresses—the time evolution
of the square of a wavepacket that describes the probability distribution for a particle
that is known to have been in the left half of the box at t = 0. This is mathematically
straightforward (Problem 6-20) and leads to the probability distributions sketched in
Fig. 6-2 after time steps of �t . The figure shows a changing distribution suggestive of
the particle bouncing back and forth in the box with a cycle time of 8�t . It is not difficult
to see why this happens. �1 and �2 have different “frequency factors” exp(−iEnt/h̄),
so they behave like two waves oscillating at different frequencies. Since E2 = 4E1
(recall E ∝ n2 in the box), �2 oscillates four times faster than �1. This means that, by
the time �1 has made half a cycle (and is equal to −1 times its starting coordinates),
�2 has made two cycles and is just as it was at t = 0. It is easy to see from Fig. 6-1
that this will give a � that is skewed to the right, leading to the distribution shown in
Fig. 6-2(e). (This allows us to conclude that 4�t equals 1/2 of the cycle time of �1.
See Problem 6-21.)

If we want a more accurate starting representation for the localized particle, we must
mix together a larger number of stationary-state wavefunctions. In order to decide
how much of each is needed, we must have a better-defined description of � at t = 0.
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Figure 6-2 � |�(x, t)|2 from Eq. (6-38) as it appears at various times.

Figure 6-3 � A normalized half sine wave in the left half of a “box.” The numbers at left are values
of �, not of E.

Suppose, for instance, we choose to describe the starting wavefunction �(x, 0) as a
normalized half sine wave in the left side of the box and zero at the right (Fig. 6-3).
Then we can calculate the amount (cn) of each of the stationary-state functions ψn

present in this function as follows:

cn =
∫ L

0
ψn�(x, 0)dx (6-39)

This follows from the completeness10 and orthonormality of {ψn}. (See Problem 6-4.)
Evaluation of Eq. (6-39) for the first few terms gives (Problem 6-22)

�(x, t) = 0.600ψ1 + 0.707ψ2 + 0.360ψ3 + 0.000ψ4 + 0.086ψ5 + · · · (6-40)

This modifies slightly our earlier commonsense combination and also verifies our pre-
diction that ψ3 times a positive coefficient would be beneficial.

10Because �(x, 0) has a discontinuous derivative at the midpoint of the box, it falls outside the class for which
{ψn} is complete. However, because this problem is restricted to dx around one point, it should have little effect.
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This example illustrates the basic approach to such problems:

1. Find a function that represents the initial particle distribution �(x, 0).

2. Expand that function as a series of eigenfunctions for the hamiltonian, and include
the time-dependent factor for each term.

3. Evaluate the probability distribution at other times t by examining |� (x, t)|2.

As a second example, suppose one were considering the behavior of the electronic
state immediately after a tritium atom emits a beta particle to become a helium ion:
3
1 H → 3

2 He +0−1 e. A crude analysis could be attempted by imagining that the nuclear
charge suddenly changes from 1 to 2 a.u., and the orbiting electron (not the beta particle)
suddenly finds itself in a state (the original 1s state) that is not an eigenfunction for the
new hamiltonian. We would accordingly set �(t = 0) to be the 1s AO of hydrogen and
expand this in terms of He+ eigenfunctions. Only s-type AOs could contribute because
of symmetry. The coefficients are given by

cn =
∫ allspace

ψ1s(Z = 1)ψns(Z = 2)dv (6-41)

and the time-dependent wavefunction is (in a.u.)

�(r, θ,φ, t) = c1ψ1s(Z = 2) exp(−2it) + c2ψ2s(Z = 2) exp(−it/2)

+c3ψ3s(Z = 2) exp(−2it/9) + · · · (6-42)

This function could be evaluated at various times t and would be found to give an
oscillating spherical distribution, as though the electron cloud were shrinking, then
rebounding to its original distance, then shrinking again, etc.

Our next example is perhaps the most important: It is a particle initially localized in
some region of space, say by measurement of its position, and free to move anywhere
thereafter. Taking the one-dimensional case, we imagine that the particle has been
detected around x =0 at t =0 (the measurement caused it to be “unfree” for an instant).
We assume that the average momentum of the particle is zero. We seek to know how
the probability distribution function for the particle will evolve in time.

As before, we need a functional description of the wavefunction at t = 0,�(x, 0).
We will then expand that in terms of eigenfunctions of the free-particle hamilto-
nian. As we have seen in Section 2-5, the free-particle eigenfunctions may be written
exp(±i

√
2mEx/h̄), where E is any nonnegative number. These are also eigenfunctions

for the momentum operator, with eigenvalues
√

2mEh̄.
The function usually selected to describe �(x, 0) is a gaussian function:

�(x, 0) =
(

4
√

2α/π
)

exp(−αx2) (6-43)

The constant α affects the width of the gaussian and reflects our degree of certainty
in our knowledge of position. Large α gives a tight function and small uncertainty
�x. The relationship between the gaussian function in x and the coefficients of the
eigenfunctions as a function of

√
2mE/h̄ is depicted in Fig. 6-4. Remarkably, the

coefficient values are also described by a gaussian function (in
√

2mE/h̄). Furthermore,
the tighter the gaussian function is in x, the broader the corresponding gaussian function
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Figure 6-4 � (a and c) Gaussian wave packets describing particles found to be at x =0 with differing
degrees of certainty. (b and d) Values of ck (where k =√

2mE/h̄) for momentum eigenfunctions that
combine to express the gaussian wave packets to their left. (a, b) corresponds to relatively certain
position and relatively uncertain momentum, whereas (c, d) corresponds to the opposite situation.

is in
√

2mE/h̄ (Problem 6-24). That is, we need to combine free-particle eigenfunction
contributions from a wider range of momenta to create a tighter position function. This
means that greater certainty in position goes with greater uncertainty in momentum, in
accord with the uncertainty principle.

Once we have the appropriate mixture of momentum eigenfunctions, each with its
time-dependent term, we can follow the time evolution of the particle wave packet.
We find that the packet spreads out more and more about x = 0 as time passes, which
means that our knowledge of position is decreasing as time passes. Even though the
average position is not changing, the probability for finding the particle at a distance
from x = 0 is increasing.

We can interpret this by remembering that the square of the wavefunction predicts
the results of many experiments. In each of many position measurements finding the
particle near x = 0, we impart some degree of momentum to the particle. Then, in
a second measurement, we find that some of the particles have moved away from
x = 0. The longer we wait before taking the second measurement, the greater this
spread in x values. (Our assumption of zero average momentum amounts to saying that
large deviations from zero momentum are equally likely for motion toward x = +∞
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and −∞.) The more precise our first position measurement is, the greater the likelihood
of introducing momenta quite different from zero and the more rapidly the wave packet
spreads out as time passes.

In the first example, a packet located in half of a one-dimensional box, we saw |�|2
oscillate back and forth, changing shape in the process so that the motion cannot be
described with a single frequency. A related important case is that of an oscillator
moving in a harmonic potential. Let us assume the oscillator’s position at t = 0 to be
described by a gaussian wavefunction. If this function is not centered at the oscilla-
tor’s equilibrium position, we have a time dependent situation analogous to the above
particle-in-a-box case. For a harmonic potential, it can be shown11 that |�|2 remains
a gaussian function as time passes (i.e., does not change shape), and that the center
of this gaussian oscillates back-and-forth about the equilibrium position with the clas-
sical frequency. This is a situation of interest to spectroscopists because it bears on
the process of electronically exciting a sample of diatomic molecules. Suppose the
molecules are initially in their ground electronic and ground vibrational states. Then
their vibrational wavefunction is a simple gaussian function (the lowest-energy har-
monic oscillator wavefunction) centered at Re (i.e., not off-center). If the molecules
are excited by a laser pulse to a new electronic state having an equilibrium internuclear
distance of R′

e, the vibrational wavefunction at t = 0 is still the simple gaussian cen-
tered at Re, which means that it is now off-center. As time passes, the center of this
function oscillates back and forth about R′

e in a coherent manner (i.e., describable with
a single frequency). Thus, we have gone from an initial state describing an ensem-
ble of molecules vibrating about Re with zero-point energy hv/2 and with random
phases (i.e., a time-independent state wherein such measurable properties as average
molecular dipole moment appear to be constant) to a final state where the molecules are
vibrating in phase about R′

e (a time-dependent state, wherein one might expect to see
time variation of such properties). If Re were quite a bit smaller than R′

e, for instance,
then almost all the molecules would find themselves to be “too short” at t = 0, “too
long” a short time later, etc., as they swing in phase about R′

e. As a result of this simple
behavior, it is possible to take advantage of it and time a second laser pulse to strike the
molecules when they are almost all at their shortest, or all at their longest, extension.
Of course, in real molecules the potential is not exactly harmonic. Furthermore, phase
coherence is eventually lost due to collisions. So the second pulse must come very
soon after the first one.

6-17 Summary

Some of the postulates and proofs described in this chapter are most important for what
follows in this book, and we list these points here.

1. ψ describes a state as completely as possible and must meet certain mathemati-
cal requirements (single-valued, etc.). ψ∗ψ is the probability density distribution
function for the system.

2. For any observable variable, there is an operator (hermitian) which is constructed
from the classical expression according to a simple recipe. (Operators related to

11See Schiff [3, pp. 67, 68], and Tanner [4].
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“spin” are the exception because the classical analog does not exist.) The eigenvalues
for such an operator are the possible values we can measure for that quantity. The act
of measuring the quantity forces the system into a state described by an eigenfunction
of the operator. Once in that state, we may know exact values for other quantities
only if their operators commute with the operator associated with our measurement.

3. If the hamiltonian operator for a system is time independent, stationary eigenfunc-
tions exist of the form ψ(q,ω) exp(−iEt/h̄). The time-dependent exponential does
not affect the measurable properties of a system in this state and is almost always
completely ignored in any time-independent problem.

4. The formula for the quantum-mechanical average value [Eq. (6-9)] is equivalent to
the arithmetic average of all the possible measured values of a property times their
frequency of occurrence [Eq. (6-33)]. This means that it is impossible to devise a
function that satisfies the general conditions on ψ and leads to an average energy
lower than the lowest eigenvalue of Ĥ .

5. The square-integrable eigenfunctions for an operator corresponding to an observable
quantity form a complete set, which may be assumed orthonormal. The eigenvalues
are all real.

6. Any operation that leaves Ĥ unchanged also commutes with Ĥ .

7. Wavefunctions describing time-dependent states are solutions to Schrödinger’s time-
dependent equation. The absolute square of such a wavefunction gives a particle
distribution function that depends on time. The time evolution of this particle distri-
bution function is the quantum-mechanical equivalent of the classical concept of a
trajectory. It is often convenient to express the time-dependent wave packet as a lin-
ear combination of eigenfunctions of the time-independent hamiltonian multiplied
by their time-dependent phase factors.

6-17.A Problems

6-1. Prove that d2/dx2 is hermitian.

6-2. Integrate the expressions in Eqs. (6-13) and (6-15) to show that their integrals are
equal.

6-3. Prove that, if a normalized function is expanded in terms of an orthonormal set of
functions, the sum of the absolute squares of the expansion coefficients is unity.

6-4. Show that a particular coefficient ck in Eq. (6-30) is given by ck = ∫
µ∗

kψ dv.

6-5. A particle in a ring is in a state with wavefunction ψ = 1/
√

π cos(2φ).

a) Calculate the average value for the angular momentum by evaluating∫
ψ∗L̂zψ dφ, where L̂z = (h̄/i) d/dφ. (Use symmetry arguments to evaluate

the integral.)

b) Express ψ as a linear combination of exponentials and evaluate the average
value of the angular momentum using the formula Lz,av =∑

i c∗
i ciLzi where

Lzi is the eigenvalue for the ith exponential function.
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6-6. Using Eq. (6-37), show that �x · �px ≥ h̄/2.

6-7. What condition must the function φ satisfy for the equality part of ≥ to hold in
Eq. (6-34)?

6-8. Suppose you had an operator and a set of eigenfunctions for it that were associated
with real eigenvalues. Does it necessarily follow that the operator is hermitian
as defined by Eq. (6-10)? [Hint: Consider d/dr and the set of all functions
exp(−ar), where a is real and positive definite.]

6-9. a) Show that the nonstationary state having wavefunction

� = (1/
√

2)ψ1s exp(it/2) + (1/
√

2)ψ2p0 exp(it/8)

is a solution to Schrödinger’s time-dependent equation when Ĥ is the time-
independent Ĥ of the hydrogen atom. Use atomic units (i.e., h̄ = 1).

b) This time-dependent state is dipolar and oscillates with a characteristic fre-
quency ν. Show that ν satisfies the relation E2 − E1 ≡ �E = 2πν in a.u.
(The dipole oscillates at the same frequency as that of light required to drive
the 1s ←→ 2p transition. This is central to the subject of spectroscopy.)

6-10. From the definition that φ′ = φ − Sψ [see the discussion following Eq. (6-26)],
evaluate the normalizing constant for φ′, assuming that φ and ψ are normalized.

6-11. Given the two normalized nonorthogonal functions (1/
√

π) exp(−r) and√
1/3πr exp(−r), construct a new function φ that is orthogonal to the first

function and lies within the function space spanned by these two functions, and
is normalized.

6-12. If the hydrogen atom 1s AO is expanded in terms of the He+ AOs, what is the
coefficient for (a) the He+ 1s AO? (b) the He+ 2p0 AO?

6-13. The lowest-energy eigenfunction for the one-dimensional harmonic oscillator is
ψn=0 = (β/π)1/4 exp(−βx2/2).

a) Demonstrate whether or not momentum is a constant of motion (i.e., is a
“sharp” quantity) for this state.

b) Calculate the average momentum for this state.

6-14. Demonstrate whether x2d/dx and xd2/dx2 commute. What about xd/dx and
x2d2/dx2?

6-15. Evaluate the following integrals over all space. In neither case should you need
to do this by brute force.

a)
∫

(3dxy)L̂2(3dxy) dv

b)
∫ (

3dxy

)
L̂z(3dxy) dv
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6-16. The operators for energy and angular momentum for an electron constrained to
move in a ring of constant potential are, respectively, in a.u. −(1/2)d2/dφ2 and
(1/i)d/dφ.

a) Discuss whether or not there should be a set of functions that are simultane-
ously eigenfunctions for both operators.

b) Discuss whether or not there is a set of functions that are eigenfunctions for
one of these operators but not the other.

c) Discuss whether it is reasonable to expect these two physical quantities to be
exactly knowable simultaneously or whether the uncertainty principle makes
this impossible.

6-17. Suppose a hydrogen atom state was approximated by the function φ = (1/
√

3)1s
+(1/

√
3)2s + (1/

√
3)3s, where 1s, 2s, and 3s are normalized eigenfunctions for

the hydrogen atom hamiltonian. What would be the average value of energy
associated with this function, in a.u.?

6-18. A function f is defined as follows: f = 0.1 · 1s + 0.2 · 2p1 + 0.3 · 3d2, where
1s is the normalized eigenfunction for the 1s state of the hydrogen atom, etc.
Evaluate the average value of the z component of angular momentum in a.u. for
this function.

6-19. Without looking back at the text, prove that (a) eigenvalues of hermitian operators
are real, (b) nondegenerate eigenfunctions of hermitian operators are orthogonal,
(c) nondegenerate eigenfunctions of Â must be eigenfunctions of B̂ if Â and B̂

commute.

6-20. Using Eq. (6-38), obtain an expression for |�|2 as a function of x and t .

6-21. Evaluate �t of Fig. 6-2 in terms of m, h, and L.

6-22. Verify the values of the coefficients in Eq. (6-40). How can you tell from simple
inspection that (a) c2 will be largest and positive, (b) c4 will be zero, (c) ci will
tend toward small values at large i?

6-23. a) Evaluate the first two coefficients in Eq. (6-42).
b) What qualitative difference would you expect between � of Eq. (6-42) and

one that takes explicit account of the changing potential resulting as the beta
particle travels away from the nucleus?

6-24. Show by qualitative arguments based on mathematical functions why coefficients
ck should drop off more rapidly with k if the position wave packet is broader.
ck = ∫ (

4
√

2α/π
)

exp(−αx2) exp(ikx) dx.

6-25. a) Prove that, if V is real and �(x,y, z, t) satisfies Schrödinger’s time-dependent
equation, then �(x,y, z,−t)∗ is also a solution. (This is called “invariance
under time reversal.”)

b) Show that, for stationary states, invariance under time reversal means that
Ĥψ∗ = Eψ∗ if Ĥψ = Eψ and if V is real.

c) Show from (b) that nondegenerate eigenfunctions of Ĥ (with real V ) must be
real.
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d) What becomes of the 2p−1 AO (with time dependence included) upon complex
conjugation and time reversal? the 2p0 AO?

e) Can the statement in (c) be reworded to say that all degenerate eigenfunctions
of Ĥ (with real V ) must be complex?

Multiple Choice Questions

(Try to answer these without referring to the text.)

1. Which one of the following statements about the eigenfunctions of a time-
independent Hamiltonian operator is true?

a) Any linear combination of these eigenfunctions is also an eigenfunction for Ĥ .
b) The state function for this system must be one of these eigenfunctions.
c) The eigenvalues associated with these eigenfunctions must all be real.
d) These eigenfunctions must all be orthogonal to one another.
e) These eigenfunctions have no time dependence.

2. A hydrogen atom is in a nonstationary state having the wavefunction 1
2 {ψ1s

exp(it/2h̄) + ψ2s exp(it/8h̄) + ψ2p0 exp(it/8h̄) + ψ2p+1 exp(it/8h̄)}
Which statement is true at any time t?

a) A measurement of the energy has a 25% chance of giving −0.5 a.u.
b) The average value of the z component of angular momentum is 0.5 a.u.
c) The average energy is − 7

8 a.u.
d) A measurement of the total angular momentum has a 75% chance of giving√

2 a.u.
e) None of the above statements is true.

3. The function rexp(−0.3r2) cos θ is expanded in terms of hydrogen atom wavefunc-
tions. This series may have finite contributions from bound-state eigenfunctions

a) of all types: s,px,py,pz, dxy, dyz , etc.
b) of all types except s.
c) of types px,py,pz only.
d) of type pz only.
e) of types pz and dz2 only.
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