CHAPTER

FIVE
PAIR AND COUPLED-PAIR THEORIES

We saw in Chapter 4 that configuration interaction (CI) using only doubly
excited states (DCI) predicts that the correlation energy of N noninteracting
minimal basis H, molecules is proportional to N2 as N becomes large.
Because the energy of a macroscopic system is an extensive thermodynamic
property, it must be proportional to the number of particles; thus DCI 1s
not a satisfactory procedure for treating large systems. For example, the
correlation energy per atom of a crystal obtained using DCI is zero! It is
clear that to describe correlation in infinite systems one must use methods
that yield energies that are proportional to the number of particles. Even for
finite systems, it is desirable to use approximations which give results that
can be meaningfully compared for molecules of different size. For example,
when studying the dissociation of a molecule one should use a method which
is equally good, in a certain sense, for the intact molecule and the resulting
fragments. Approximations, which have the property that the calculated
energies vary linearly with the number of particles as the size of the system
increases, are said to be size consistent. In the special case of a supermolecule
formed from N closed-shell noninteracting “monomers,” a size-cOnsistent
scheme yields a supermolecule energy which is just N times the monomer
energy.

Although size consistency seems like a modest requirement, all forms
of CI except full CI, which is of course exact, do not have this property. In
this chapter we consider pair and coupled-pair theories, which are size
consistent, and in the next chapter we discuss a form of perturbation theory,
which also has this property. The price one pays for size consistency is that
unlike DCI, pair and perturbation theories are not variational and the total
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electronic energy obtained using them can be lower than the true energy.
For example, pair theory can give, in certain cases, as much as 1209, of the
correlation energy.

In Section 5.1 we describe the independent electron pair approximation
(IEPA). We use an approach that leads quickly to the computational for-
malism but which may give the misleading impression that IEPA 1s an
approximation to DCI. After showing what is involved in performing pair
calculations, we will return to the physical basis of the formalism and show
that in fact both IEPA and DCI are different approximations to full CIL. In
Subsection 5.1.1 we describe a deficiency of the IEPA, not shared by DCI or
the perturbation theory of Chapter 6 namely, that the IEPA is not invariant
under unitary transformations of degenerate molecular orbitals. In Sub-
section 5.1.2 we present some numerical results which show that while the
IEPA is reasonably accurate for small atoms, 1t has serious deficiencies when
applied to larger molecules.

In Section 5.2 we consider how to go beyond the IEPA by incorporating
coupling between different pairs of electrons. We will discuss the coupled
pair many-electron theoty (CPMET) which is also called the coupled-
cluster approximation (CCA). We then describe a number of simplifications
to this rather sophisticated approach; in particular, we consider the coupled
electron pair approximation (CEPA). Finally, in Subsection 5.2.4 we pres-
ent some numerical applications of coupled-pair theories.

Since coupled pair theories are important but somewhat complicated,
in Section 5.3 we discuss, as a pedagogical device, the use of these methods
to calculate the energy of an N-electron system described by a Hamiltoman
containing only single particle interactions. This problem can easily be
solved exactly in an elementary way. However, by seeing how ‘‘high-pow-
ered’” approaches work in a simple context, we will be able to gain insight
Into the nature of these approximations. In particular, the relationship
between different many-electron theories will become clear. As a concrete
application of many-electron formalisms (CI, IEPA, CEPA, etc.) to a
system described by a one-electron Hamiltonian, we consider the resonance
energy of cyclic polyenes within the framework of Hiickel theory in Sub-
section 5.3.2. Our purpose here is not to advocate the use of Hiickel theory
or the use of many-electron methods to obtain the resonance energy.
Rather, we wish to exploit the analogy between the resonance energy and
the correlation energy and provide an analytically tractable model which
can be used to illustrate some of the computational aspects of various
many-electron approaches.

5.1 THE INDEPENDENT ELECTRON PAIR
APPROXIMATION (IEPA)

We have seen in the last chapter that the correlation energy obtained from
the intermediate normalized (i.e., (@¢|¥,> = 1) full Cl. wave function formed
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by making all possible spin orbital excitations from the HF determinant i1s

Eewe= 3 ¥ (Pl H¥R> = 1T T (¥ (51)

a<br<s ab rs
where ¢i; are the variationally determined coefficients of the doubly excited
determinants in the full ClI wave function. Recall that the coefficients of
single excitations are absent because of Brillouin’s theorem, while triple and
higher excitations do not appear because the Hamiltonian contains at most
two-particle interactions. This expression suggests that we writethe total
correlation energy as a sum of contributions from each occupied pair of
spin orbitals,

Ecnrr - Z eﬂb (52)
a<pb
with
e = ). Carl Vol |Wip) (5.3)

r<s

where e, is the correlation energy resulting from the interaction of the pair
of electrons which, in the Hartree-Fock approximation, occupy spin orbitals
%, and yx,. Although the above decomposition is exact, it is also deceptive
since we need the full CI wave function to obtain the coefficients cf;. Thus
for an N-electron system, we must consider all the electrons to calculate
exactly e, for the ab pair. Can we devise a scheme for approximating the
pair energy of each pair of electrons independently of other pairs? If so,
then i1n effect we could approximately reduce an N-electron problem to
N(N — 1)/2 two-¢lectron problems. The independent electron pair approxi-
mation (IEPA) 1s such a scheme. The IEPA was introduced in quantum
chemistry, independently, by O. Sinanoglu' and R. K. Nesbet.? These
authors used different terminology and formulations, but their final results
are essentially equivalent. Sinanoglu called his theory the Many-Electron
Theory (MET) while Nesbet used the name Bethe-Goldstone Theory. In
addition, for reasons which will become apparent shortly, the IEPA has
been referred to as “pair-at-a-time” CIL
How can we calculate the correlation energy associated with a pair of
electrons in spin orbitals a and b (i.e, the pair energy e,)? The simplest
approach is to forget about the remaining N — 2 electrons (i.c., leave them
in their HF spin orbitals) and let only the electrons in spin orbitals a and b
correlate by exciting them into the virtual orbitals. We construct a corre-
lated wave function for the pair ab, denoted by [¥,,>, by allowing the HF
wave function to interact with determinants formed by exciting only this
pair. If for the sake of simplicity we ignore single excitations (which as we
have seen in the last chapter have little effect on the correlation energy), the
pair function |\, is
War) = W) + X cal¥ad (5-4)

r<s
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where, as usual, we use intermediate normalization. The energy of this wave
function, E_, is just the sum of the HF energy and the pair correlation
energy,

E, = <‘Po‘°#‘qjo> + e, = Eo + €, (3.5)

Thus the energy of this wave function is below the HF energy by the pair
correlation energy. To obtain the best possible energy for the above pair-
function, we use the linear variation method. Thus we coristruct the matrix

representation of the Hamiltonian in the subspace spanned by |¥ > and all
double excitations involving y, and y, and then find the lowest eigenvalue
of this matrix. Equivalently, we substitute the expansion for [¥ ) into

t#"{’ﬂb> = Eablq}nb> (56)
to obtain

%ﬂ(l‘i’o) + ) c‘a'i,l‘PL'D) = Eab(l‘Po + ) cz:mp) (5.7)

t<u f<u
We then multiply this equation successively by (¥,| and (¥%| to obtain
Eo+ Y, cud¥o|#|¥s) = E, (5.82)

t<u

and

(Wb

HN\Wo> + ), CYRIAH|Yardcab = Eanci (5-8b)

t<u

Using Eq. (5.5), these equations become
2, CaWo|H|VatD = eu (5.9a)

I<u

and

Vol Ao + ), (Va|# — Eo|Vardcap = eanci (5.9b}

t<u

Finally, one can rewrite these equations in matrix form by defining

(Dagrsou = (V| — Eo| Vi) (5.10a)
(Bﬂb)rs - <lP;i|‘#|‘P0> (S.IOb)
(cﬂb)rs = C;Fi, (S.IOC)

so that Eqgs. (5.9a) and (5.9b) are equivalent to

0 BL\/1\ (1 S 1
Bab Dab cab S cab ( )

This matrix eigenvalue problem is solved for each of the N(N — 1)/2 pairs
of occupied electrons. The total correlation energy is then obtained by
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adding up the respective pair energies,

E. . (IEPA)= ) e, (5.12)

a<p

Although each pair energy e, is obtained by doing a variational, CI-type
calculation, the sum of the pair energies is not necessarily above the exact
correlation energy. The individual pair CI matrices are much smaller than
the DCI matrix and one never has to calculate matrix elements of the type
(Wip|o? |Wes> which couple the pairs ab and cd. The IEPA is computationally
equivalent to doing DCI for each pair separately; thus, it is sometimes
called “pair-at-a-time” CI. This terminology and the fact that the IEPA is
computationally simpler than DCI would appear to suggest that the IEPA
is an approximation to DCI. However, this is misleading and as we will see
in the next section, where we consider how to incorporate coupling between
different pairs, it is more appropriate to view the IEPA as an approximation
to full CI which is different from DCI.

Before we give a simple illustration of pair theory, we consider some
approximations to the pair equations in order to make contact with per-
turbation theory. If in Eq. (5.9b) we neglect coupling between excited deter-
minants (Le., we keep only the term ¢t =r and u = s in the summation),
we have

(Vo |Wo) + (VR|H — Eo| P>l = encii (5.13)
If we solve this equation for ¢ and substitute it mto Eq. (5.9a), we obtain

e, = — Z (lP()“#‘lP?l‘:Mz
* (V5| — Eo| W5 — e

r<s

(5.14)

Since e, is small compared with the difference between the energies of the
HF and doubly excited states, it can be set equal to zero in the denominator,
so that we have

rs\ |2
efgq — Z |<TOI°#|‘Pab>l

5.15
Z (WA = Eg¥ 6-1)

Since the correlation energy obtained using this approximation to the pair
enecrgies,

E.. EN)= > e (5.16)

a<b

was derived by Epstein and Nesbet, €5} is called the Epstein-Nesbet pair
correlation energy. Since the total correlation energy using Epstein-Nesbet
pairs, with large basis sets, overestimates the correlation energy even more
than pair theory, it is only occasionally discussed in this book. Finally, if we
further approximate the energy difference between |W,) and [¥i;,> by
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differences in HF orbital energies,

(Wi|# — Eo|Vi)> ~ € + & — €,— &, (5.17)

then we obtain

rs\ |2
951? — Z |<‘POI'#“Pab>‘ (518)

r<s ot & — & — & )
which is called the first-order pair energy and is the simplest possible approx-

imation to pair theory. The corrf:lation energy obtained using first-order
PAIrs 1S

rs\|2 2
£ FO)= ¥ ¥ KHAVYDL _ 5 5 KO 5,

a{br-ﬂssa'f'sb_sr—'ss a-cbrﬂssa'*'sb_sr_ss

As we will see 1n the next chapter, this expression is identical to the first
correction to the HF energy obtained within the framework of many-body
perturbation theory (i€, it is the second-order energy). Thus the simplest
form of perturbation theory immediately leads to a form of pair theory.

Exercise 5.1 The application of pair theory to mimimal basis H, is trivial
since we are dealing with a two-electron system for which the IEPA is
exact, 1.€., it gives the full CI result obtained in the last chapter, viz.

lEcnrr =A— (Az + K%Z)Uz
where (see Eq. (4.20))

A=(ea =)+ 311 +J22— 42 + 2Ky3)

a. Calculate the correlation energy using first-order pairs. Remember that
the summations in Eq. (5.19) go over spin orbitals (i.e, a = 1,1 and
r = 2, 2). Show that

K1,
2(e, — &3) -

"Ecor(FO) =

b. Approximate A in the exact correlation energy by ¢, — ¢, and recover
the first-order pair correlation energy by expanding the exact answer to
first order using the relation (1 + x)V% ~ 1 4 x/2.

As a simple illustration of pair theory we calculate the correlation energy
of a dimer consisting of two noninteracting minimal basis H, molecules.
Since H, contains only two electrons, pair theory is identical to full CI and
hence i1s exact for the monomer. Recall that we label the occupied and
virtual orbitals of the ith monomer as 1, and 2;, respectively, and that, since
the monomers are noninteracting, all two-electron integrals containing
orbitals from different subunits are zero. Since the dimer has the configuration
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(1,)*(1,)* we need to find six pair correlation energies, i.e., €, 1,, €;,1,» €;.1.,
e1,1,» €1,1,, and e, 1,. However, only two of these six pair energies are non-
zero namely, e; 7, and e;,;1,. To see this, consider the mixing of a doubly
excited state in which a pair, say (1;, 1)) is excited into the virtual orbitals
2, and 2,, with the HF ground state

(‘Polf I‘Pﬁcfzf ) = (1:'le |2k21>

_ (11]22)=K12 1f:—j;k-hl (5.20)
0 otherwise

Since this matrix element is zero unless both electrons are located within a
given subunit and unless they are excited to the virtual orbitals of the same
subunits, the pair function for (1,, 1)), is

Wi = [¥o) + chi P (5.21)

The corresponding pair equations obtained from Egs. (5.9a) and (5.9b) are
K et = ey, (5.22a)
Ky, + 2AC:fi%: = 6’1'1,0%:%1 (5.22b)

where 2A =2(e;, — €,)+ J,; + J2; —4J,, + 2K,,. These equations are
identical to the full CI equations of a single minimal basis H, molecule (see
Egs. (4.19a) and (4.21)). Thus e, 1, = e,,1, = 'E,, Where 'E__,_ is the exact

correlation energy of a single H, molecule. Then the total correlation energy
in the IEPA for the dimer is

zEcmr(IEPA) — ellil + elzIz = 21Ecnrr (523)

so that it is twice the exact correlation energy of the monomer. The above
discussion can immediately be extended to show that the IEPA correlation
energy of N independent H, molecules is N times the correlation energy of
the monomer. Thus we see that the IEPA is size consistent as stated pre-
viously. Since IEPA is exact while DCI fails badly for this model, one
cannot really consider the IEPA to be an approximation to DCI.

Exercise 5.2 Derive Egs. (5.22a) and (5.22b).

Exercise 5.3 Calculate the total first-order pair correlation energy for
the dimer using Eq. (5.19) and show that it is twice the result obtained in
Exercise 5.1.

5.1.1 Invariance under Unitary Transformations: An Example

In spite of the fact that the IEPA is not variational, it has an advantage over
DCI in that it is size consistent. Unlike DCI and many-body perturbation
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theory (discussed in Chapter 6) the IEPA has the distinct disadvantage of
not being invariant to unitary transformations of the occupied spin orbitals
in the HF determinant. As we have seen in Chapter 3, if we transform the
occupied spin orbitals {y,} among themselves, |'¥ ;> will not change; however,
the total correlation energy obtained using the IEPA will be different. Since
the canonical HF orbitals are unique, apart from degeneracies, the IEPA
using nondegenerate orbitals does give a unique correlation energy. In the
case of degeneracies, however, an arbitrary mixing of degenerate orbitals
can occur in the SCF calculation. The particular linear combination obtained
can be a function, for example, of the iteration step at which it was decided
to terminate the procedure. The fact that the sum of pair correlation energies
is not invariant to this very arbitrary mixing is particularly distressing.

We now investigate this invariance problem with our minimal basis
model of two noninteracting H, molecules. The following example also
provides us with an opportunity to introduce the concept of spin-adapted
pair correlation energies. Up to this point we have considered spin-orbital
pair energies. For example, in a 4-electron system with iy, and y, doubly
occupied, we must calculate six spin-orbital pair energies, i.€., €,1, €12, €13,
ers, €14, and e,5. However, not all of the corresponding spin-orbital pair
functions are eigenfunctions of &2, In particular, ¥,,, ¥,3, ¥1,, and ¥z
are not pure spin states. The idea behind spin-adapted pair theory is simply
to use only pair functions which are eigenfunctions of &2. In general, the
correlation energy calculated from spin-orbital or spin-adapted pair energies
differs, as will be shown by our example.

For two independent H, molecules using molecular orbitals localized
on the two monomers, (i.e., 1,, 2,, 1,, 2,) we have seen that the IEPA gives
the exact result for the correlation energy of the dimer. We now repeat
our analysis using a set of equivalent delocalized molecular orbitals. Since
orbitals 1, and 1, as well as 2, and 2, are degenerate, we can take an arbitrary
linear combination of them and retain the same HF description. In particular
we consider the completely delocalized orbitals,

a=2"Y1,+1,) 1t * HE () (5.24a)
b=2"1721,-1,) + + T T ( (5.24b)
r=2"122 -2,) +* T T + (9 (5.24¢)
s=2"120,+2) T T L 1) (5.24d)

The pluses and minuses indicate the sign of the atomic basis functions in
the LCAO description of the four orbitals. Note that a and r are of gerade
symmetry while b and s are of ungerade symmetry. The HF wave function
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in terms of these delocalized orbitals is
|‘P0> = |aﬁb5) (5.25)

This wave function is identical to |1,1,1,1,), which is a reflection of the
fact that the HF wave function is invariant to a unitary transformation of
the occupied orbitals.

Exercise 5.4 Show that |aabb) = |1,1,1,1,). Hint: use Eq. (1.40) re-
peatedly. Eq. (1.40) for Slater determinants is

%12 (Z Ckxi) ERD IO DI 7Y SRR R 1D
k

k

Using the expansions in Egs. (5.24) one can show that the two-electron
integrals over the delocalized orbitals are

(aa|aa) = (aa|bb) = (bb|bb) = (ab|ab) = }J ,, (5.26a)
(rr|rr) = (rr|ss) = (ss|ss) = (rs|rs) = 3J 2, (5.26b)
(rr|aa) = (ss|aa) = (rr|bb) = (ss|bb) = (ab|rs) = }J,, (5.26¢)

(ra|ra) = (sb|sb) = (rb|rb) = (sa|sa) = (ra|sb) = (rb|sa) = $K,, (5.26d)

and the orbital energies are ¢, = ¢, = ¢, and ¢, = g, = ¢,.

We now find the six spin-orbital correlation energies: e, €., €455 €zps
ez5- €ps- First consider the pair aa. Since |W,) is of gerade symmetry and is
an eigenfunction of %, with eigenvalue zero (i.e. Mg =0), only doubly
excited determinants of gerade symmetry having equal numbers of spin
up and spin down electrons, interact with ¥ ). Therefore the required pair
function 1s

|¥aa) = [Yo) + 1| VYo + | Vx> (5.27)

Since
(|| = (aal|rF) = (ar|ar) = (ralra) = 3K 4, (5.28a)
(W o| A YSSD = (aallss> = (as|as) = (sa|sa) = 1K, (5.28b)

it 1s convenient to use symmetric and antisymmetric combinations of these
functions (i.e, 27! %[5> + [¥:))) so that only the plus combination mixes

with the ground state. Introducing a new notation for this plus combination
WEF> =27 VH|WE + V) (5.29)
we can write the aa pair function as

I‘Pﬂﬁ> = |IP0> + CI‘P:H* (530)
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The required matnix elements are

(W |y = 27 12K ] (5.31a)
<T:ﬁ*|‘}f — EjWVoi) = 2(e; — &) + Jaz + %(Jll - 4-112 + 2K, ,)
)
= 2N’ (5.31b)

Exercise 5.5 Derive Egs. (5.31a) and (5.31b).

The equations which deternmiine the pair energy are (see Egs. (5.9a,b)).
e=2 V2K, ,c (5.32a)
272K L+ 2A'c = eyC (5.32b)

By eliminating ¢ from these equations and solving the resulting quadratic
equation for e, we find

e = A — (&) + Ki,/2)'? (5.33)

Because of the high symmetry of this problem. as manifested by the relation-
ship between the two-electron integrals in Eqgs. (5.26), it follows that e,; =
e,;- We now show that e, = e; = 0. To see this, consider the pair function
for the ab pair. Since only double excitations of gerade symmetry and

M = 0 need be considered, we have \
W) =¥Yo> + | V5 (5.34)

However, this double excitation does not mix with [,
(Wol# ¥ = (ab||rs) = (ar|bs) — (as|br) = O (5.35)

and thus the pair correlation energy of the ab pair is zero. The argument
for the ab pair is the same. This result has an interesting physical interpreta-
tion. Since correlation between electrons with the same spin 1s included in
the HF approximation (Fermi hole), pair theory does not give any additional
correlation. While it is not true in general that pair energies of electrons with
the same spin are zero, they are smaller than the other pair energies.
Finally, we must find e, and e,. Proceeding in the same way as for
the aa pair (i.€., eliminating double exaitations of the wrong symmetry and
then constructing * linear combinations) the ab pair function becomes

V5 = Vo) + c|Va (5.36)
where
W2y =27 12(WED + WD) (5.37)

The ab function is obtained by interchanging a and b. Now it can be shown
that the equations which determine the ab pair are identical to Eqgs. (5.32)
so that the pair correlation energies for the ab and aa pair are the same. Thus
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the total pair correlation energy for the dimer using delocalized orbitals is

zEcnrr(IEPA(D)) = €up 1+ €pp + €4p + €5 + €5 T+ €45

= 4€aﬁ
= 4(A' — ((A)* + K1,/2)'%) (5.38)
This is to be compared to the result obtained using localized orbitals o
2E_.(IEPA(L)) = 2(A — (A* + K{)'Y9) (5.39)

which is exact for the model. It is clear that the two expressions are different,
and using the minimal STO-3G basis set two-electron integrals in Appendix
D for R = 1.4 a.u., we find

2E.  (exact) = E__ (IEPA(L)) = —0.0411 a.u.
2E  (IEPA(D)) = —0.0275 a.u.

so that there is almost a factor of 2 difference between the two results! In
real systems, the situation is not quite so bad, and the results obtained using
localized and delocalized molecular orbitals, although different, are closer.
For example, Bender and Davidson® have found for boron hydride, using
a large basis set of Slater orbitals, that with canonical SCF orbitals the
IEPA correlation energy is —0.141, a.u., while with localized orbitals it is
—0.139 a.u..

Exercise 5.6 Show that e ;; = e, = e,,.

Exercise 5.7 Show that DCI is invariant to unitary transformations for
the above model.

a. The DCI wave function 1s
[Wpa) = |Wod + | VEFD + o] WD + | VED + |V

Show that the corresponding eigenvalue problem which determines the
DCI correlation energy of the dimer (E,, (DCI)) is

0 2712Ky, 277Ky, 27Ky, 2777Kga) [
2-12K IN 11 1K, —J,, 3K;—J2\ ] ¢
2_”21(12 %J” AN %Ku‘—le %Klz_le Cy
272K, %Ku—Ju %KIZ_JIZ 2N 311 €3
2712K %Klz‘_-]u %K12—J12 %Jll 2A° Cq

|
Cy
=2E__ (DCD| c,
C3
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b. Show that ¢, = ¢, = ¢3 = ¢4 = ¢ and then solve the equations to show
’E...(DCI) = A — (A% + 2K3,)!7? )
which 1s the same result as found 1n the last chapter (see Eq. (4.60)).

The pair functions |¥ ) and [¥;,) are not pure singlet wave functions.
For example, as can be seen from Eq. (5.37), the doubly excited states in the
pair function W}* are |rabs) and |sabF), which correspond to

[ ] A

1 |
| S r S
i ’ and ‘:’ s

respectively. Recall (see Table 2.7) that there are two linearly independent
singlet spin functions arising from the configuration (a)'(b)!(r)'(s)" namely,
[“¥5> and |[P¥7;)>. The matrix elements we require for our discussion are in
Table 4.1. Using these results, along with the integrals in Egs. (5.26), it follows
that

(Po|l# AW = GBS =0 (5.40)

and hence we only need consider {*¥;;> in constructing the spin-adapted
pair function for the ab pair,

"Wa) = [Po) + ") (3.41)

The required matrix elements are

(‘Polf |B\P;i> = K, (5.42a)
PPl —EoP¥0)=2(es—e)+J 11 +J22—2J 12+ K 2= 24" (5.42b)

the corresponding pair equations are
erslet — K| ,0 (5.43a)
K, + 2A"c = epetete (5.43b)
Solving these in the standard way, we find
et = A — (A2 + K3,)'2 (5.44)

Since the pair functions for the aa and bb pairs are pure singlets the total
correlation energy for the dimer using spin-adapted pairs 1s

2En?(IEPA(D)) = €,q + €55 + €39
= 2(A" — (A + K12/2)'%) + (A" — ((A")* + K12)'%)
(5.45)
With the STO-3G minimal basis set, the above correlation energy is —0.0258

a.u. as compared to —0.0275 a.u. obtained using spin-orbital pairs. Thus
pair theory is not only variant to unitary transformations of degenerate HF
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orbitals, but also gives different answers depending on whether one uses
spin-orbital or spin-adapted pair functions.

It 1s interesting to note, however, that the simplest form of pair theory,
namely, first-order pairs (see Eq. (5.19)), is invariant to unitary transforma-
tions of degenerate orbitals. To see this, we approximate A’ = A" = ¢, — &,
1in Egs. (5.38) and (5.45),

-

K2 1/2
ST (R (. W b

2(e, — 81)2

2 rsinglet K%Z 1z
Eene(IEPA(D)) = 2( (e — &) — (e, — &) 1 + 2(82_81)2) )

K\
+ ((82 — &) — (& — 81)(1 + e, — 81)2) )

Notice we have factored (¢, — &,) out of the square roots. Expanding the
square roots using (1 + x)!'?2 = 1 + x/2, we find

*EconFO(D)) = 4( 4(:?2 )) = 2( Kiz ) (5.462)

and

_ _KZ _KZ KZ
2 prsinglet _ 12 L 12 — 12
Eme (FO(D))-2(4(82_*£1)) (o) =25z ) (56

These results are equal to the total first-order pair correlation energy,
obtained in Exercise 5.3, for the dimer using localized orbitals. The total
fhirst-order pair correlation energy is identical to the second-order many-body
perturbation result for the correlation energy (see Chapter 6). The above
results are a reflection of the fact that many-body perturbation theory is
invariant to unitary transformations of degenerate orbitals.

Finally, we have seen that using localized orbitals, the IEPA applied to
a dimer of noninteracting minimal basis H, molecules gives twice the exact
energy of the monomer. However, using delocalized orbitals, the energy of
the dimer is no longer twice the monomer energy because of the invariance
problem. This appears to contradict our statement that IEPA is size con-
sistent; however, the essential requirement for size consistency is the linear
variation of the correlation energy with the number of particles. Thus while
the energy of N H, molecules calculated within the IEPA may not be N
times the exact energy of H,, it will be proportional to N as N becomes
large rather than N1/2 as with DCL.

Exercise 5.8 Show directly from Eq. (5.19) using delocalized orbitals and
the two-electron integrals in Eq. (5.26) that the total first-order pair corre-
lation energy (which is the same as the many-body second-order perturbation
energy) of the dimer is given by Eq. (5.46).
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Exercise 5.9 Show that the total correlation energy obtained using
Epstein-Nesbet pairs is not invariant to unitary transformations.

a. Show, using localized orbitals, that

2

K
2E___(EN(L)) = A”.

b. Show, using delocalized spin-orbital pairs, that

2

K
2 _ 12
£__ (EN(D}} = Gk

cCOorr !

c. Show, using delocalized spin-adapted pairs, that
Ki, Ki,
2N 2A7

d. Using the STO-3G integrals for H; in Appendix D compare the nu-
merical values of the above expressions at R = 1.4 a.u.

Eq*(EN(D)) =

Exercise 5.10 The DCI wave function for the H, dimer using spin-
adapted configurations is

I‘PDCI> = I‘P(}) + ¢, |'VVE + Cz“P:B*> + c3|"Wip)

Show that the corresponding DC] eigenvalue problem is

0 212K, 2-12K,, K,
2-12K |, 207 - W 274Ky, — 2Jy)
2"”2K12 171, 2A 2_”2“(12 — 2J,,)
Ky, 27VYXK,,—2],,) 27V¥K,,—2J,,) 24"
1 1
X “l ’E ol DCI) %
C, )
Cs C3

and then solve the resulting equations to show that

2Ecnrr(DCl) =A— (Az + 2K%2)”2

5.1.2 Some Illustrative Calculations

An impressive success of the IEPA is its prediction of the ground state energy
of the beryllium atom. The spin-orbital pair correlation energies obtained by
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Table 5.1 Spin-orbital pair correlation ener-

gies (a.u.) of Be
Pair Correlation energies

(1s, 1s) —0.0418 .
(1s, 2s) —0.0008

(1s, 2s) —0.0021

(Is, 2s) —0.0021

(2s, 2s) —0.0454

Total pair energy —0.0930

Exact correlation energy —0.094

4 R. K. Nesbet, Phys. Rev. 155: 51 (1967).

Nesbet using a large Slater basis set containing s, p, d, and f orbitals are
shown in Table 5.1. The total IEPA correlation energy is 98.9% of the exact
correlation energy. It is estimated that if g, h, i, . . . orbitals were to be included
in the basts, the IEPA would give very close to 1009 of the exact correlation
energy. Of course, because IEPA is not variational, it is possible to obtain
over 100%. The individual pair correlation energies listed in Table 5.1 show
some interesting trends. The largest values are for pairs with opposite spin
in the same orbital (e.g., (1s, 1s)) and the smallest are for pairs with parallel
spins (e.g., (1s, 2s) or (Is, 2s)). This is a reflection of the fact that the HF
approximation does in fact correlate electrons with the same spin (the Fermi
hole); its major defect is that it allows electrons of different spin to be in the
same place.

For larger atoms, the IEPA works less well. Using a very large basis
containing s, p, d, f, g, h, and i orbitals, Nesbet, Barr, and Davidson* obtained
a correlation energy for neon of 1079 of the exact result. Since their basis
was still not complete, they estimate that the IEPA gives about 1109 of the
exact correlation energy. The IEPA appears to be even poorer for molecules.
For example, Langhoff and Davidson® studied N, using a moderately large
Gaussian basis set. It was estimated that if full CI were to be performed in
this basis one would obtain a correlation energy of —0.35 a.u. They per-
formed an essentially complete DCI calculation, which gave —0.324 a.u. for
the correlation energy. This result is necessarily less than the basis set
correlation energy. The IEPA, on the other hand, gave a correlation energy
of —0.412 a.u., which is 18% larger than the estimated exact result. With
larger basis sets, giving 80 or 909 of the exact correlation energy, it is likely
that the IEPA 1is even worse. Thus to obtain a really accurate approximation
for the correlation energy one has to improve upon the IEPA. This can be
done by incorporating coupling between pairs as will be discussed in the
next section.
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S.2 COUPLED-PAIR THEORIES

In this section we will extend the IEPA to incorporate coupling between
different pairs ab and cd. Although DCI does include such coupling, since
one heeds matrix elements of the type ¢ 3]3?’] ">, DCI is not size consis-
tent. Because full CI is the exact, but computationally prohibitive, solution
to the many-electron problem, it seems reasonable to begin our search for a
size-consistent extension of the IEPA by considering the full CI equations
and seeing if we can find a novel approximation to them. For the sake of
simplicity, we ignore the presence of single, triple, etc. excitations; thus, the
intermediate normalized full CI wave function is

|¢0> = ‘\I;()) + Z ]‘Prb> + bz , cEi‘E‘aI‘PZi‘JB " (5.47)
a<b a<b<c<
r<s r<s<t<u

where the dots represent hextuple etc. excitations. As we have seen in the
last chapter, to determine the variational energy of this wave function, we
substitute it into

(‘%p - EO)‘(D(J) = Ecnrr‘q)ﬁ)

and then successively multiply by (‘POI, (WL, (WP dl etc. to obtain the

following set of coupled equations

Z <‘P0|‘#I d>c cnrr (5-483)

c<d
t<u

tu
d,)Ccd
c{d
1< u

+ Zd <‘Prb“%p I sbtt::1>c;itt::1 — Ecnrrczi (5'48b)
f<u

and so on. For example, the next equation involves the coefficients of the
quadruples and the hextuples. Note that in writing the matrix element
between doubles and quadruples we mcorporated the fact that matrix
elements between determinants which differ by more than 2 spin orbitals are
zero. The above equations form a hierarchy in which the correlation energy
depends on the coefficients of the doubles, but the equation for these coefhi-
cients involves the coeflicients of the quadruples and so on. Clearly, to make
progress, we must terminate or decouple this hierarchy. The simplest pro-
cedure is to set cf5.q equal to zero, obtaining a closed set of equations involving
only the coefficients of the doubles. The resulting equations are identical to
the DCI equations, which can be derived by starting with a CI wave function
containing only double excitations and then using the linear variation
method. Is there an alternate and perhaps less drastic way to decouple the
hierarchy?
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S.2.1 The Coupled-Cluster Approximation (CCA)

If we could express the coefficients of the quadruples as some function of the
doubles coefficients, then we would obtain a closed set of equations. In
Chapter 4 we found an indication of how this might be done. The full CI
wave function for two noninteracting minimal basis H, molecules is

I‘Do) = ‘11-1-112-1-2) + C%:%:|212112T2> + C%:%:|11T12222>

+ch13102,7,2,7,% (5.49)
In Exercise 4.12 we found that
21Jilade — ((21)(capz (5.50)

That is, the coefficient of the quadruple excitation is just the product of the
coefficients of the two double excitations. This result can be readily under-
stood without our previous algebraic manipulations. The two H, molecules
are separated by infinity so that, for all intents and purposes, we can ignore
the requirement that the total wave function be antisymmetric with respect
to the interchange of electrons which belong to different H, molecules.
Thus since two H, molecules are independent, we can write the exact wave
function of the dimer as a product of the exact wave functions of the mo-
nomers,

lq’o) = [|11T1> + Cii%ilzlzl >][i12-1-2> + Cﬁ%ilzzIz)]
= 1, 1,0|1,1,) + c28[2,2, 51,1, + 323|1,1,)]2,2,)
+ chicif2,2,))2,2,) (5.51)

Comparing this equation with Eq. (5.49), note that (aside from antisymmetry)
for the two functions to be identical the coeffictents of the doubles and
quadruples must be related by Eq. (5.50). In this simple four-electron model
system, the two pairs of electrons are independent and the coefficient of the
quadruply excited configuration in the full CI wave function is exactly equal
to the product of the coefficients of the double excitations.

In a real many-electron system two pairs of electrons ab and cd are, of
course, not independent. However, since the IEPA works fairly well, it seems
reasonable to approximate the coefficients of the quadruples as products of
the coefficients of the doubles. Thus we write symbolically

rstu rs L
Cabed = Cab * cd (552)

The reason why 75+ is not simply the product of ¢75 and ¢4 can be understood
as follows. We can obtain a quadruply excited configuration in which
electrons in spin orbitals abcd are excited to rstu in many ways. For example,

. a—r d—u . a—r d—u
not only can we excite and but we can excite and :
b—s c—1 b—t cC—S

In the first case, if |¥,) is |- abcd - - -, we would obtain a quadruply
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excited determinant |- - - rstu - - -) while in the second case we would get
[-- - rtsu - --)>. These determinants represent the same quadruply excited
state but have different signs (i.e., |- - -rtsu- - > = —|- - -rstu---)). Thus we
could represent cijy either as ciycis or —cocy. Unfortunately, there are 18
distinct ways we can get a particular quadruple excitation from independent
double excitations and 3+, is the sum of all possible products of such double

a

excitation coefficients. The rather formidable result is

Cobed = Cap * Cog = CapCeq — {Cap * Coi
= CabCed — CoeCha 't CaaChe — CapCea + CacChd — CaaChe
+ CapCeq — CacCha + CudChe + CabCoa — CacCha + CadChe
— CabCed + CacCha — CadChe + CapCid — Caclha + CaaChe  (5.53)
The signs in front of the various terms are a result of the antisymmetry
property of Slater determinants as explained above. Substituting this ex-
pression into Eq. (5.48b), we have

Vol Vo> + ). (VR|H — E[Yiddci

c<d
t<uy
+ Y V||V (g * e = [ Y, (Wol#|Wiadeid | e
g = (5.54)
t <y rP<y

where we explicitly used the result in Eq. (5.48a) for E_ ... Now
(Vo| W) = (Yol |V

when ab # cd and rs # tu. Since 3, * ci vanishes when ab = cd and rs = tu,
Eq. (5.54) becomes

Vol |Wo) + D, (WalH — Eo|¥eidcca — 2, (ol |Wed iy, * i

c<d c<d
<y <y
+ Y (Po|H# [P i =( >, <%Wi‘l‘:3>cﬁ) 2
c<d c<d
<y <y

where we have used the definition ¢ * ¢4 = clicis — (3 * 4> (see Eq.
(5.53)). Note that the expression on the right-hand side cancels with a term
on the left-hand side, to give

PR H|Wo> + D KWRIH — EofWPudcls — 3. (¥o|o|Weid{ciy » ciid =0

C
c<d ¢ <d

I <y <<y

(5.595)

This equation, along with the definition of the symbol (¢} * 4> given in
Eq. (5.53), and the expression for the correlation energy in Eq. (5.48a) are
the equations of Coupled-Pair Many-Electron Theory (CPMET), which 1is
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also called the Coupled-Cluster Approximation (CCA). We shall use the
latter name throughout this book. In quantum chemistry the CCA is asso-
ciated with the names of J. Cizek and J. Paldus® who first derived these
equations and studied their properties. The casting of Eq. (3.55) into a
computationally convenient form involves fairly iaborious manipulations.
It should be remembered that we have neglected single excitations in ob-
taining the CCA equations. The CCA inciuding only doublie excitations has
been called CCD (coupied-clusters doubles) to distinguish it from more
general versions of the theory that also incorporate single (CCSD) and
higher excitations. Since such extensions are not considered here we will
continue to use the acronym CCA.

We now briefly discuss various aspects of CCA. One of the interesting
features of this formalism is that Eq. (5.55) does not explicitly contain the
correlation energy. Moreover, since it contains products of the doubles
coefficients, 1t is nonlinear. Thus, uniike CI, the correlation energy within the
CCA cannot be obtained by simple matrix diagonalization. The CCA,
although quite complicated, has many attractive properties. Aithough it
incorporates coupling between different pairs just as DCI (i.e., it contains
matrix elements of the form (Wijo# WD) it is, in contrast to DCI, size
consistent. Moreover, it does not suffer from the invariance problems of the
IEPA (ie., it is invariant to unitary transformations of degenerate orbitais).
However, 1t is still not a variational scheme; that is, it is possibie to obtain
more than 1009 of the exact correlation energy using the CCA.

After applying the CCA to the problem of N independent minimal
basis H, molecules, we will briefly reconsider the ideas behind this formalism
from a more fundamental point of view.

Consider a supermoiecuie consisting of N noninteracting minimal basis
H, molecules. In this system, there are N double excitations of the form
|¥$:4> i=1,...,N. Since all the H, monomers are identical, all the co-
efficients of these doubles are equal. Denoting these coefficients by ¢, and
since {(Wo[#'|¥21)> = K, for all i, Eq. (5.48a) becomes

JiW.E =NCK12 (5 56)

COrr

A given double excitation [¥Z#'> will mix with N — 1 quadruple excitations
of the type |¥% 312 »j # i. The matrix element between the double and
quadruplie excitations is again just K,

VLI EELED = QPP =K1 i#)
If we write the coefficient of this quadruple excitation as c%* ?'cl Ty = ¢?, Eaq.
(5.54) becomes

K, +2Ac + (N — 1)K ,,c? =NE_..c = (NcK,,)c (5.57)

orr

The factor (N — 1) appears in front of K, ,¢* since there are N — 1 quadruple
excitations that mix with a given deuble excitation. Note that NK , ;¢ cancels,
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and we can rewrite Eq. (5.57) as
Ky, +2Ac — K{,¢?2=0 (5.58)
Solving this equation for ¢, we find

A — (A% + K%,)V2
C = ( K 12) (5-59)
12

so that the correlation energy in Eq. (5.56) becomes
NE.or(CCA) = N(A — (A% + K,)'/%) (5.60)

which is just N times the exact correlation energy of a single H, molecule.
Thus the CCA, unlike DCI, is exact for our model problem. Recall that
DQCI 1s not exact for N > 2. Thus by approximating the coefficients of the
quadruples by the square of the coefficient of the doubles we did much more
that just approximate DQCI. We have in fact implicitly approximated the
coeflicient of the hextuples as the cube of the coefficients of the doubles and
so on. The reason CCA gave the exact answer for our idealized model is
because in our model the coefficient of all higher (hextuple, octuple, etc)
excitations are exactly equal to products of the coefficients of the double
excitations. This aspect of CCA is brought out clearly using a more funda-
mental point of view (which is how historically CCA arose) discussed in the
next subsection. This section uses some second quantization notation and
may be skipped without loss of continuity.

S.2.2 The Cluster Expansion of the Wave Function

Recall that, using second quantization, a doubly excited determinant |\¥};>
can be written as

P‘Pﬁ) = a} a;abaanI())

where q,, q, remove occupied spin orbital from the HF determinant and
al, a! replace these by unoccupied spin orbitals. Thus the doubly excited CI
wave function can be written as

[Woc) = (1 + . D> Ca Ialabaa) o)
4 abrs
We now introduce a wave function, which not only contains double
excitations but also quadruples, hextuples, etc. excitations in such a way
that the coefhicients of the 2nth-tuple excitations are approximated by prod-
ucts of n doubly excited coefficients. Such a wave function |®c,>, can be
written as

[@cca) = eXp(T ) |Wo) (5.612)
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L |
where

1
T, = 2 Z csalalaa, (5.61b)

abrs

This s called the cluster form of the wave function. To get some feeling for
it, we expand the exponential as exp(x) =1 + x + 3x? + - - - to obtain

1 1
|¢CCA> ={1+ a Z cpalata,a, + 37 Z CovCaralaya.alalasn, + - - ) ‘T{J)
abrs abcd
rstu

1 1
= |Wod +— Y Vo) + 35 2. cavCed Vapea> + -
4 abrs 32 abcd

rstu
which, after somewhat lengthy manipulations, can be written as

[@ccad = [Fop + 2 ca|Pied + ) cp» cal¥ope> + - (5.62)
a<b a<b<c<d
r<s r<s<t«<y

where ¢ * ¢ is our shorthand notation for the sum of the 18 products of
doubly excited coefficients in Eq. (5.53). Thus this form of the wave function
has the feature that higher excitations are products of double excitations.

An alternate, but equivalent, derivation of CCA can be given using the
wave function {®c,) in Eq. (5.62). By substituting {@cc4 > into the Schro-
dinger equation

(‘%0 — EO) ‘¢L‘CA> = EcnrrI(DCCA>

and then successively multiplying by (W[, and {¥;;| one can show that the
resulting equations are identical to our previous Egs. (5.48a) and (5.55),
since the matrix element between ('P;| and any hextuple excitation is zero.
The above theory can be generalized to incorporate the effect of single
and/or triple and higher excitations. For example, single excitations can be
included by replacing 7, in Eq. (5.61a) by J, + Z,, where

'7.1 - Z C:aI aa
ra
To distinguish various extensions, the theory using only double excitations

(i.e., 73} is commonly called CCD, while the acronym CCSD is used when
both single and double excitations are included (1.e., 7, + 75).

Exercise 5.11 Show that the wave function two independent H, mole-
cules 1n Egs. (5.49) and (5.50) can be written as

. 2,3 2,3 T
'(D) = exp(ﬁiﬂ“%ﬁ%ﬁl,all + Cliiiagza%zaizalz)ill-fl1212>
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5.2.3 Linear CCA and the Coupled-Electron Pair
Approximation (CEPA)

Although CCA 1s an excellent approximation, it is rather demanding from
the computational standpoint. The final equations of CCA have a com-
plicated algebraic structure and can be approximated in numerous ways.
In this subsection we consider two possibilities that are most often encoun-
tered in the literature. The simplest possible approximation is to set {cJ;, * Ciy
equal to zero 1in Eq. (5.55) to obtain
VRl o)y + 2 (Y5

c<d
1=y

H — Eo|¥edcia =0 (5.63a)

This along with the usual expression for the correlation energy

Ecnrr = Z <TOIKI\PE;>C$ (5'63b)
c<d

constitute what 1s called linear CCA (L-CCA). Note that we have eliminated
the nonlinear terms after the cancellation involving the correlation energy
was performed. If we would have simply set c’}, * & equal to zero, we would
have obtained the usual DCI equations.

Introducing the matrix notation

(B pasy = (ol |¥iD
(D)rasb, tcud — <T;i,'=%9 T EOI‘P:::;>

(€)rasp = Cab
Egs. (5.63a, b) become
B+Dc=0 (5.64a)
E_.. =B'c (5.64b)

Corr

Solving Eq. (5.64a) for ¢ and substituting the result into Eq. (5.64b), we have
E__=-BY(D)'B (5.69)

COoIT

which is a convenient form for the correlation energy in linear CCA. It 1s
interesting to compare this with an expression for the DCI correlation energy
obtained in the last chapter (see Eq. (4.30a)),

E._=-B{D—-E_1)'B (5.66)

corr CoIr

Recall that one way of finding the DCI correlation energy 1s to solve Eq. (5.66)
iteratively (i.e., begin by setting E____ = 0 on the right-hand side, find E__,
and use this to find E___and so on until convergence is found). Thus Eq. (5.69)

appears to be an approximation to DCI. This is, however, misleading because
the linear CCA, although no longer variational, is size consistent. This
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approximation is identical to the infinite-order doubly excited many-body
perturbation theory (D-MBPT(c0)) of Bartlett and coworkers’ which was
originally derived by diagrammatic summation techniques (see Subsection
6.7.3).

Exercise 5.12

a. Show that if the matrix D 1s approximated by its diagonal elements, the
L-CCA correlation energy is identical to the result obtained using Epstein-
Nesbet pairs (i.e., Egs. (5.15) and (5.16)).

b. Show that linear CCA 1s invariant under unitary transformations for the
problem of two independent H, molecules. First show that for this model
the correlation energy of the dimer using localized orbitals is the same
as that obtained in Exercise 5.9a. Then show using delocalized spin
orbitals that, in contrast to the results of Exercise 3.9, one gets the same
correlation energy. You will find the DCI matrix given in Exercise 3.7
useful.

We now consider a different approximation to CCA, originally proposed
and implemented by W. Meyer?® called the Coupled Electron Pair Approxi-
mation (CEPA). We begin again with the CCA equation (5.55). Instead of
ignoring all the terms involving {c7; * ¢%> we retain those where ¢ = a
and d = b. Thus we have

PRI F o> + Y. (VR — Eo|Wi) cha = ), (W || Wap) <l * ¢l
c<d <y
I<u

(5.67a)

From Eq. (5.53), which defines {cf} * ¢, it follows that

(Cab * Cab) = CapCap
where we have used the fact that a coefficient like 73 is antisymmetric in the
occupied or unoccupied indices (e.g., ¢;;, = — ¢ = — ¢5p)- Substituting this
into Eqg. (5.67a) we have
CHalH¥ + T CFapr — Eo¥cti=( T Pl 1D ) (5670

c<d t<u
t<u

Recognizing that the sum in parentheses is the expression for the pair
energy e, (see Eq. (3.9a))
e = ), (Pol['¥ap> iy (5.68a)

I<u

Eq. (5.67b) becomes
CPBIH P> + Y (Pl — Eo|Pudcth = ey, (5.68b)

c<d
t<u
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The CEPA correlation energy is given by
Ecnrr = Z €ab (5680)

a<p

These are the equations of CEPA. Note that they are very similar to both
the IEPA and DCI equations. If ¢, in Eq. (5.68b) were replaced by the total
correlation energy, we would obtain the DCI equation (See Eq. (4.26b)). On
the other hand, if the summation over ¢ < d were approximated by a single
term (i.e., ¢ = a, d = b) we would recover the IEPA result given in Eq. (5.9b).
CEPA includes coupling between pairs ab and cd, unlike the IEPA, yet it
remains size consistent, unlike DCI. Note that computationally, because
the equation which determines e, contains the coefficients of other pairs
(c.q), the equations in CEPA must be solved iteratively. The major advantage
of CEPA over CCA is that it is much simpler computationally. The price
one has to pay is (among others) that CEPA is no longer invariant to unitary
transformations as is CCA. However, it appears to be more nearly invariant
than the IEPA.

As an illustration of the above formalism we calculate the CEPA
correlation energy of our dimer of two noninteracting H, molecules using
both localized and delocalized orbitals. Since with localized orbitals there
is no coupling between different pairs in this model (i.e., (¥3:§:|#|¥3 3> =0
when i # j) CEPA and IEPA are the same. Using delocalized orbitals, the
situation is different. The CCA is exact in this case since it is invariant to
unitary transformations, while CEPA is not. However, as we will see CEPA
works much better than the IEPA. Since CEPA can formally be obtained
from the DCI equations by merely replacing E_,,, by the appropriate pair
correlation energies, we immediately get from the result given in Exercise 5.7

’Ecore =27 12K5(ci v o+ Cat o) =€+ e+ €5+ €zp

272K 3+ 28¢y + 31163 + (3K — T ya)es + (3K gz — J13)cs = et

and similar equations for ez, e, €z,- From the symmetry of the equations,
it follows that ¢; = ¢, = ¢3 = ¢4 = ¢ and thus all four pair energies are
equal. Hence

2Ec.mr =4e=4(2" 1/2K1 2C) (5693.)
2—1/2K12+(2Ar+%J11 +K12—2J12)C=€C (5.69b)

Recognizing the quantity in parentheses in Eq. (5.69b) as 2A (see Egs. (4.20)
and (5.31b)) we have

272K ., +2Ac=ec

Multiplying this equation by 2~ V2K, and using Eq. (5.69a), we obtain
K2,/2 + 2Ae = €* (5.70)
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#
Solving the quadratic equation for ¢ and then using Eq. (5.69a), we finally
have

?Ecor(CEPA(D)) = 4(A — (A% + K14/2)"?) (5.71)

Note that this is not equal to the exact correlation energy (i.e., 2(A —
(A? + K%,)'?)) of the dimer. However, using the STO-3G minimal basis
H, integrals, in Appendix D, 2E,,,(CEPA(D)) = -0.0414 a.u. as com-
pared to the exact value of —0.0411 a.u. Thus CEPA is nearly invariant
for this problem.

Before considering some applications of coupled-pair theories, it is
appropriate to summarize the formal relationship of these theories among
themselves and with DCI (see Table 5.2). It can be seen that DCI, L-CCA,
and CEPA are rather similar from the computational point of view. For-
mally, L-CCA can be obtained from DCI by setting E.,,. = 0, while by
setting E_ ., = ¢, one obtains CEPA. One must be careful not to be mislead
by this formal similarity. It might appear that L-CCA is in fact an approxi-
mation to DCI. This is not the case; L-CCA is size consistent in contrast to
DCI. A better point of view is that all these schemes are different approxi-
mations to full CI. DCI is variational but is not size consistent. L-CCA,
CEPA, and CCA are not variational but are size consistent. Among the
three coupled-pair theories, the CCA is expected to be the best. As we have
seen, the L-CCA can be obtained from the CCA by setting {c} * iy =0
while to obtain CEPA, one makes an apparently less drastic approximation.
However, it turns out that while L-CCA 1s invariant to unitary transforma-
tions of degenerate orbitals, CEPA is not. On the other hand, it is difficult
to argue, on first principles without numerical applications, that L-CCA
should work better than CEPA when applied to a variety of molecules.

Table 5.2 The formal relationship between
DCI1 and various coupled-pair theories

Ecnrr = Z enb enb = Z (q’{J"#l‘P:;)c;i

a<h r<s

(Vo] Wo) + ) (Voo — Eg|Widcta= X
c<d
t<u

Method X
DCl E o Cop
L-CCA 0

CEPA €Cos

CCA > {Wo| | WL » >

c<d
I<u
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These comments emphasize that one must be careful in evaluating various
approximation schemes. The consequence of an approximation 1s often
more subtle than it appears at first glance.

5.2.4 Some Illustrative Calculations

In this section we present results for the correlation energy and equilibrium
geometry of H,O obtained with a near-HF one-electron basis (the 39-
STO basis described in Chapter 4) via DCI, IEPA, L-CCA, and CCA.
Meyer and his coworkers have stldied potential energy surfaces, ionization
potentials, dipole moments, and polarizabilities of a variety of molecules
using CEPA. Some of their impressive results are contained in a review by
Meyer.®

The correlation energies of H,O obtained via a variety of many-electron
theories within the same one-electron basis are shown in Table 5.3. These
results must be compared with the exact basis set correlation energy ( —0.296
a.u.), which is different from the exact correlation energy (—0.37 a.u.) be-
cause the one-electron basis is incomplete. Otherwise one would obtain the
erroneous conclusion that of all the methods, the IEPA works the best. It
is, in fact, the worst; it overestimates the correlation energy by 13%,. We
note that the correlation energies obtained via the L-CCA and CCA are
close to each other and to the exact result. Both are superior to SDCI. The
closeness of the L-CCA and CCA is somewhat surprizing because the
L-CCA 1nvolved an apparently drastic approximation to CCA.

In Table 5.4 we present the calculated equilibrium geometries and two
force constants obtained using the above methods. It can be seen that

Table 5.3 Correlation energies (a.u.) of
H,O at the experimental geometry calcu-
lated with the 39-STO basis described in

Chapter 4
Ei.ﬂrr

SDCY —0.2756

IEPA® —0.3274
L-CCA? —(0.2908

CCA®b —0.2862
Estimated full CI -0.296 *+ 0.001
Exact —0.37

“B. J. Rcsenberg and 1. Shavitt, J. Chem. Phys
63: 2162 (1975).

®R. J. Barteu, I. Shavitt, and G D Purvis, J.
Chem. Phys. T1: 281 (1979).
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Table 5.4 Equilibrium geometry and some force constants of
H,0 calculated with the 39-STQO basis described in Chapter 4

SCF* SDCI* L-CCA®? CCA® Expertment

R a.u.) 1.776 1.800 1.810 1.806 1.809
0, 106.1 104.9° 104.6' 104.7° 104.5°
Irr 9.79 8.88 8.51 8.67 8.45
Jeo 0.88 0.81 0.80 0.80 0.76

“B J Rosenberg, W. C. Ermler, and I. Shavitt, J. Chem. Phys. 65: 4072
(1976).

? R.J. Bartlett, L. Shavitt, and G. D. Purvis, J. Chem. Phys. 71: 281 (1979).
These references contain a large number of additional force constants.

L-CCA and CCA represent a significant improvement over SDCI, which 1s
in turn significantly better than SCF. When compared to experiment, the
L-CCA appears to be slightly better than the CCA! However, one should
not jump to the conclusion that the L-CCA is a better approximation. After
all, the one-electron basis is clearly not complete and we do not know the
equilibrium geometry of H,O that would be obtained if a full CI were to be
performed in this basis. On the other hand, it is possible that the L-CCA
accidently accounts for the effect of single and triple excitations absent in
the CCA so that the L-CCA results are really closer to the exact values in
the basis. These considerations highlight the need to apply approximation
schemes to a variety of molecules, using basis sets of increasing sophistica-
tion, before drawing conclusions as to the superiority of one method over
another.

5.3 MANY-ELECTRON THEORIES WITH SINGLE
PARTICLE HAMILTONIANS

We have encountered a variety of techniques (CI, IEPA, CCA, CEPA) for
calculating the correlation energy of a many-electron system, and in Chapter
6 we will discuss still another approach based on perturbation theory. The
complexity of these formalisms and of the many-electron problem itself is
the result of the two-particle nature of the coulomb repulsion between
electrons. If the Hamiltonian contained only single particle interactions,
there would be no need for sophisticated many-electron theories since we
could solve the problem exactly simply by diagonalizing the Hamiltonian 1n
a basis of one-electron functions (i.e., the orbital picture would be exact).
Nevertheless, it is instructive to apply the formalism of many-electron
theories to an N-electron problem described by a Hamiltonian that contains
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only single particle interactions. By seeing how these sophisticated tech-
niques work in such a simple context, insight into the nature of these ap-
proaches can be gained. As we shall see here and in the next chapter, when
one approaches a many-electron system with only single particle interac-
tions, using the formalism of many-electron theories, one obtains equations
that are almost completely analogous, yet much simpler, than those en-
countered previously. In particular, the nature of the approximations and
the relationship between different approaches becomes especially trans-
parent. Moreover, the calculations can be done analytically but still contain
many of the features of ab initio talculations. This section is a rather long
diversion and may be skipped without loss of continuity. Only the second
half of Section 6.3 depends on some of the results obtained here.

We begin by posing the problem and solving it exactly in an elementary
way. Suppose we have a N-electron system described by the Hamiltonian

H=Ho+V =Y hfi) + ¥ v(i) (5.72)

To obtain a zeroth-order description we assume that the perturbation ¥ is
negligible, and find the eigenfunctions and eigenvalues of the N-electron
Hamiltonian 3. Since 3, contains only single-particle interactions, we
proceed as follows. First, we find the complete orthonormal set of spin
orbitals {¥{®}, which are eigenfunctions of h,

hox!® = ey (5.73)

The ground state wave function, |[¥), is then a Slater determinant con-
structed from the N spin orbitals with the lowest energies. As usual, we
label occupied spin orbitals by q, b, . . . and the unoccupied spin orbitals by
r,S,.... Thus we have °

[¥o> = - 4 1 (5.74)

This wave function is an eigenfunction of 5%,

HolPo) =Y eNW¥od (3.75)

with an eigenvalue equal to the sum of the occupied spin orbital energies.
The approximate ground state energy of the system, 1n the presence of ¥ is

Eg=(¥ol#|Wo) =D e+ D Kala) =) e+ Y v, (5.76)

so that the total energy is not simply the sum of orbital energies. Note the
analogy to the HF energy of a real system having two-particle interactions.

The excited determinants formed from the spin orbitals {3}, ie,
|‘P;), |¥53>, etc., form a complete set of N-electron basis functions. Thus the
exact wave function, |®,), of the N-electron system can be expressed as a
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linear combination of these as

@) = P> + Y P> + Y BPE> + - - (5.77)

a<hp
res

where we have used, as usual, intermediate normalization (i.e., (o [®o> = 1).
The exact ground state energy, &,, can be obtained by diagonalizing # 1n
the basis of N-electron functions (i.e., using (5.77) and the linear variation
method).

However, there is a much simpler way of finding &,. Since the total
Hamiltonian 5 is, just like ,, a sum of single-particle interactions, we can
find a set of spin orbitals {y;}, which are eigenfunctions of hy + v

(ho + V)X, = & (5.78)

Then the exact ground state wave function is just a Slater determinant
constructed from the N exact spin orbitals with the lowest energies

[Po> = |x1 """ Xa =" AND (5.79)
Since this wave function is an eigenfunction of the total Hamiltonian 3¢
H|Dy> = ) eDo> (5.80)

with an eigenvalue equal to the sum of the N lowest spin orbital energies,
the exact ground state energy is

&y = (Do|#|®e> = Y &, (5.81)

Clearly, the two procedures 1) diagonalizing ## in the basis of N-electron
functions formed from the eigenfunctions of hy and 2) diagonalizing hy + v
and adding up the N lowest spin orbital energies must give identical ground
state energies. It is equally clear that method (2) is much easier. As a peda-
gogical device, we will approach the problem the hard way using N-electron
functions. In analogy to the correlation energy, we define the relaxation
energy of our system as the difference between the exact energy and the
energy of [¥,),

Eg =&, — E, (5.82)

Our objective will be to calculate Eg using many-electron formalisms.
First, let us calculate the relaxation energy simply by solving the eigen-
value problem for hg + v,

(ho + V)|x> = &x> (5.83)
in the basis {[x{”)}. We expand |y) as

|X> = Z IXP))C;' = % |X£O)>Cb + Z ngo)>cs (5.84)
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Note that we have divided the sum over all zeroth-order spin orbitals into
the sum of the first N occupied ones and the rest. Substituting this expansion
into Eq. (5.83) and then multiplying by (3| and {(}*’| we find

Y ko + vlxs?De, + Y. Gl e, = ec, (5.85a)
b 5

Y Nl e, + D) < he + D¢, = ec, (5.85b)
b S

or equivalently

(0) _
% (Ba 5&.‘: + vab)cb -+ g UgsCs £C, (586 a)

2. UG + ) (€09, + v,)c, = &c, (5.86Db)
b 5

To rewrite these equations in matrix notation, we mtroduce an N x N
matrix H,, with elements

(H ) = P04 + vy (5.87a)
Similarly, if we define

(Hgp),s = 70, + U, (5.87b)

(H4p)os = U, (5.87¢)

(Hpp) = v, (5.87d)

Egs. (5.86a,b) become

(i ) o
Hp, Hpp/\cp Ca

Note that H, , is a square matrix with dimensionality equal to the number
of occupied orbitals while the dimensionality of Hgg is equal to the number
of unoccupied spin orbitals.

To obtain the exact energy, &,, we must solve this eigenvalue problem
and add up the N eigenvalues with the lowest energies. To make this more

explicit we let
U= (UAA UAB)
UBA UBB

be the unitary transformation, which diagonalizes the Hamiltonian matrix
in Eq. (5.88),

(HAA HAB) (UAA UAB) _ (UAA UAB) (EA 0) (5.89)
Hp, Hpp/\Upy Upp Usa Uss/\0 2

where g, 1s a diagonal matrix containing the N lowest eigenvalues. Then
the exact energy is
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Note that we have defined the matrix H, , in such a way that the sum of its
diagonal elements is equal to E,. Thus the relaxation energy can be written
in the compact form

ER = ébo - EO — ((‘700 — (Z 8;0) + Uﬂﬂ) = '[I‘(EA — HAA) (5.91)

Finally, using the unitary matrix U one can express the exact orbitals |y,
in terms of the zeroth-order orbitals [x{°"). Since the ith column of U contains
the coefficients of the ith eigenvector, the exact occupied orbitals can be
written as

‘Xﬂ) = Z ngj))(UAA)ba + Z ‘XE'O)>(UBA)H: a= 1: 2: LI N (5'92)
b y

A similar relation holds for the exact unoccupied orbitals.

For future reference we now reformulate the above theory in a way
which might appear unfamiliar at first glance but on closer inspection will
turn out to be a generalization of the procedure we have used many times
to find the lowest eigenvalue of a matrix. We are now interested in finding
the sum of the N lowest eigenvalues. The matrix eigenvalue problem in
Eq. (5.89) 1s equivalent to four equations, two of which are

H,  Uq + HygUpy = U 484 (5.93a)
Hp Uq + HpgUps = Up e, (5.93b)

Multiplying the first of these by U 4 on the right we have
H, 4 + HigUp U s = U,.8,U 4 (5.94)

Taking the trace of both sides of this equation and using the fact that
tr AB = tr BA we have

trHAA + trHABUBAUZj = trUAAEAU;j = trﬁAU;jUAA = trﬁA

Using this identity and defining

Cpa = Up Uy (5.95)
we can rewrite the relaxation energy as
ER —_ '[I‘(SA — HAA) — tI'HABCBA (5.96)

Now let us find the equation which determines Cg,. To do this, multiply
Eq. (5.94) by Ug U, on the left to obtain

UBAU;‘;HAA + UBAUZAIHABUBAU;AI = UBAEAUEAI (5.973)

Then multiply Eq. (5.93b) by U4 on the right to obtain
Hp, + HpgUg, U 4 = Uple, ULy (3.97b)
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Substracting these two equations and using the definition of Cg 4 1n Eq. (5.95)
we finally have

HBA + HBBCBA — CBAHAA — CBAHABCBA =0 (5.98)

This relation together with Eq. (5.96) completely determine the relaxation
energy. Note that Eq. (5.98) is nonlinear (i.e., it has a quadratic dependence
on the matrix Cg,) and therefore must be solved iteratively. Finally, we
translate these equations back into a form containing the zeroth-order
orbital energies and matrix elements of the perturbation. If we define

(CBA)ra - Cm (599)
then we can rewrite Eq. (5.96) as
Er =trH, pCpy = Z (H,p)es(Caa)se = Z UpsCs (3.100)
bs bs

where we have used Eq.(5.87). Similarly, the ra element of the matrix equation
(5.98) 1s

(HBA)ra T Z (HBB)rs(CBA)sa '_ Z[-,-: (CBA)rb(HAA)ba B [-,-Z (CBA)rb(HAB)bs(CBA)sa = 0

which upon using the definitions in Eq. (5.87) becomes

Ura T Z (85-0)51-5 + vrs)Csa - Z Crb(st(zmaab + vba) T Z Crbvbscsa =0 (5101)
) b bs

If this equation 1s solved for the C,’s, then the exact relaxation energy can
be found from Eq. (5.100).

In the past when we considered eigenvalue problems we were usually
interested in only the lowest eigenvalue. For the problem at hand we need
the N lowest eigenvalues. The above procedure is just a generalization of
our standard approach to finding the lowest eigenvalue. To see this, suppose

H,, 1s a 1 x 1 matrix and that the entire matrix 1s M x M. In this case
Eq. (5.96) simplifies to

M
Er=¢ —H;; = Z H,,C, (5.102)
i=2
and Eq. (5.98) becomes
M M
H; + Z H;,C;y—CyH,; — Cyy Z H.(C;=0 i=23....M
j=2

J=2

(5.103)
Setting C;; = ¢; and using Eq. (5.102) in Eq. (5.103) we have

M
H,, + Z (H;; — Hy,0;;)c; = Egc; (5.104)
J=2
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Equations (5.102) and (5.104) are equivalent to the matrix equation

0 le el HIM 1 1 1
f-fu szTHu H-?.M ‘:’z — Ey Co —(e,—H,,) fz
Hy, Hyyy -+ Hyy—H,, Cp Cm Cym

which is precisely the equation we would start with if we were after the lowest
eigenvalue.

Exercise 5.13 For the 2 x 2 matrix

(HAA HAB)__(HII le) Hy,y, <H,,

H;, Hgg N H,, H,, Hy3>0

Equation (5.96) simplifies to
Er=¢,—Hy,=H,,C
and Eq. (5.98) is
HZI + Hz;_C"' CH]I — C2H12 —

Solve this quadratic equation for the lowest C and then show that ¢, thus
obtained 1s the lowest eigenvalue of the matrix.

5.3.1 The Relaxation Energy via CI, IEPA, CEPA, and CCA

Many-electron methods use N-electron wave functions (i.e., Slater deter-
minants). For example, to perform a full CI calculation one must diagonalize
the N-electron Hamiltonian in a basis of N-electron functions formed by
making all possible excitations from a reference function, |¥,)>. Formally,
one can proceed in the identical manner irrespective of whether the Hamil-
tonian contains one or two-particle interactions or both. Of course there are
considerable simplifications in the case that the N-electron Hamiltonian
has only single particle interactions. In particular, the evaluation of the
required matrix elements is easy, and the final equations have a much simpler
structure. Recall that in a real many-electron system the correlation energy
can be written in terms of the coeflicients of the doubly excited determinants
in the full CI wave function. As we shall see, because of the one-particle
nature of the Hamiltonian, the relaxation energy can be expressed in terms
of the coeflicients of single excitations. Thus, in this section, single excitations
play the same role as double excitations do in real many-body systems.
Moreover, double excitations here are analogous to quadruple excitations
in previous sections. In particular, when we consider the analogue of CCA



304 MODERN QUANTUM CHEMISTRY

for our model problem, we will need to express the coeflicient of the doubles
in terms of products of the coefficients of the singles. This is much simpler;
instead of a messy 18-term result (see Eq. (5.53)) we will have a simple two
term expression. Finally, when the Hamiltonian only contains single particle
interactions, the analogues of pair theories are just “particle” theories. For
example, instead of writing the correlation energy as a sum of independently
calculated pair energies, e,,, we will express the relaxation energy as a sum
of “particle” energies, ¢,. We can retain the various acronyms used for pair
and coupled-pair theories if we simply change the meaning of the P’s.

We now calculate the relaxation energy using the various many-electron
approaches.

1. Full CI. The intermediate normalized full CI wave function is given in
Eq. (5.77)

P> = [Wod + Y. [¥5> + Y. o |PEY+ - (5.105)
sh b<c

To obtain the full CI equations, we substitute the above expansion for (@)
INto

(A — Eo)‘q’ca) ={(Ho+ 7 — Eo)@o) = {8 — Eo)lq’-ﬁ) = ER‘(D0> (5.106)

and then successively multiply by (W¥,|. (\¥;|. (V|- and so on, remembering
that the matrix element of a Hamiltonian containing single particle inter-
actions vanishes when the determinants differ by more than one spin orbital.
In this way we find

> (Yol # ¥ = Ep (5.107a)

bs

Ya

H|Wod + ), (Vi F — Eo|WYidcs + Y (V| H# WS> = Egc,  (5.107b)
bs bs

and so on (i.e., the next equation in this hierarchy involves the coefficients
of the doubles and triples).

Exercise §.14 Show that

a. (Wo|#|¥5) = 1y,
b. (V| #|W> =,

c. (Wi — Ej|¥;»=0 fa#b r#s
= U, fa=b r+#s
= — Upq fa##b r=
=& 4+, — 2 -y, fa=b r=s.

d. (Wi WYY = vy, Mfa#b r#s

=0 otherwise.
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Using the matrix elements found in Exercise 5.14, Egs. (5.107a, b) become

Y v,c5 = Eg (5.108a)
bs

Ura + Z (850)5rs T vrs)cf: T Z (8:(:0)5ab + vba)c;.; T Z vbsc:; = ERC:; (S'IOSb)
S b

b#a
sSEr

and so on. We now consider various approximations to full CI.

2. SCI. The analogue of truncating the CI expansion for the correlation
energy at double excitations is to use only single excitations for the relax-
ation energy. This amounts to setting cJ; = 0 in Eq. (5.108b),

Vg + D, (698, + 0,)¢; — ) (604 + vy)c; = Exc; (5.109)
S b

This along with Eq. (5.108a) for the relaxation energy completely specify
the simplest form of truncated CI.

3. IEPA. Since our Hamiltonian contains only single particle interactions,
we must devise an independent “particle” theory. In analogy to pair theory
we define a “particle” function

> = [¥od + X el (5.110)

with a variational energy equal to E, + e,. The relaxation energy then is
approximated by a sum of “particle” energies as

Ep=) e, (5.111)

To find e,, we substitute the expansion for the “particle” function into
(H# — EQ|¥.> = e ¥, (5.112)

and then multiply successively by {¥,| and {¥}|. Using the matrix elements

in Exercise 5.14, we obtain
Y v,Ch=e, (5.113a)

v,, + Z (af,‘:')é,,.s + v, )c — (aflo’ + v, )c. = e,c (5.113b)

which are the required equations. Note that they can be formally obtained
from the SCI equations by restricting the summation over b to one term
(1.e., b = a, this corresponds to neglecting “particle-particle” interactions)
and replacing E, by e,.

4. CCA. As we have seen in Section 5.2, the idea of this method, as applied
to a real many-particle system, is to truncate the full CI hierarchy by ap-
proximating the coefficients of the quadruples as sums of products of the
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coefficients of the doubles. Here we express the coefficients of the doubles
as sums of products of the coefficients of the singles. There are two indepen-
dent ways in which we can obtain the double excitation ¥/;: 1) we can
excite a— r and then b— s to get |- - - rs - - -) and 2) we can excite a — s and
thenb— rtoget|- -sr---D. Because the second determinant is the negative
of the first, we can represent cf; either as cc; or —cic;. In analogy to Eq.

(5.53), we can write
Cab = CaCh — C4Ch (5.114)

Substituting this into Eq. (5.108b) with the expression for E, in Eq. (5.108a)
we have

0 0 . —
Ura + Z(Ef' )5rs + Urs)ctsl T Z (851 )5ab + Uba)C; + Z UbsL;C; — Z Ubsff:CE — (Z Ubscg) C;
S b bhs bs bs

Note that we need not worry about the restriction b # g and s # r since the
expression for c’; 1n Eq. (5.114) vanishes when b = a or r = 5. Cancelling the
common term on the right and left-hand sides, we finally have

Ura + z (Eg'ﬁ)érs + vrs)cz _ Z (Egﬂ)aab + Uba)cg iR 2 C:'.;Ub.sci =0 (5-115)
s bs

b

Note that this equation is nonlinear and does not explicitly contain the
relaxation energy. Before we discuss its properties, we consider two ap-

proximations to CCA.

S. L-CCA. The simplest approximation is to linearize Eq. (5.115) by setting
the term which is a quadratic function of the coefficients equal to zero, i.e.,

Vg + 2 (99,5 + 0,05 — Y (679, + vy)c, =0 (5.116)
S b
This is called the linear appro».mation to CCA.

6. CEPA. Finally, we consider the analogue of the coupled-electron pair
approximation. Here instead of throwing away the quadratic term, we
approximate it as follows. First note that

s _ r s r.,. S
Z C;vbsca _' Z cavasca + Z CplpsCy
bs s b*a
s

and then ignoring the b # a terms, we obtain

r S ~ r | s r
Z cbvbs(a — Ca Z basca — eaca
bs

L)

Finally, using this in Eq. (5.115), we have
v,, + Z (€9, + v, )cs Z (9%, + vy, )ch = e, (5.117)

which is the required equation.
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Table 5.5 Equations for the relaxation energy in many-
electron theories

ER=Zea eﬂ=zvarc::
SCI: Ve + Y (€95, + v, )¢ — Y (€800 + vy.)ch = Egch,
s b
IEPA: Vpa + Z (dﬂ)ars + vrs)c: e (8510) + vaa)c:l = eaC;

L-CCA: b, + X (62, + 1.)c; — T (6%, + 5,)c5 = 0

b

CEPA: Vg + 3 (808, + 0 )5 — Y (6570, + vp)ch = euc;
s b

CCA: Vo + Y (6705 + 0,05 — Y (657800 + Uso)ch = Y ChtpsCh
5 b bs

In Table 5.5 we summarize the various results obtained so far. Although
the structure of these equations is considerably simpler than the correspond-
ing ones for a real many-body system, the insights concerning the inter-
relations among the various approaches gained from a perusal of this table
are generally valid. In particular, note that 1) CEPA can formally be obtained
from SCI by replacing the total relaxation energy Ep by e,; 2) IEPA can be
obtained from CEPA by ignoring the coupling between different “particles,”
ie., setting v, — U,,0.; 3) L-CCA can be obtained from SCI by setting
Ep = 0 or from CEPA by putting e, = 0. It is important to remember that
just because a method can be obtained from another by setting something
to zero does not mean that it is inferior. Table 5.5 also shows that all methods
except CCA are closely related from the computational point of view. In
the next section we will apply the various formalisms to a simple model
problem where the exact answer for the relaxation energy is known.

First, let us consider the CCA equations more closely. If we set

c;= Crn

in Egs. (5.108a) and (5.115) we see that they are identical to Eqgs. (5.100) and
(5.101), which determine the exact relaxation energy. Thus CCA is exact for
an N-electron system with only single particle interactions! It is gratifying
that among all the many-electron theories we have considered at least one
is exact when applied to a problem where the orbital picture is exact. This
must mean that the approximation used in deriving the CCA equations
from the exact full CI ones, i.e.,

5

s __ S
ab — C’acb - cac'!;

is really not an approximation in the present context, but an exact relation.
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This relation can be mathematically proved using the property of
determinants given in Eq. (1.40) and the fact that the exact wave function
[P0 is a single determinant. Recall that (see Eq. (5.79))

10> =ty Xa ™ XY (5.118)

and that the exact orbitals an) can be expressed as linear combinations of
the zeroth-order orbitals |9 as (see Eq. (5.92))

IX::) Z |X(0)>(UAA)ba (0)>(UBA)ra (5.119)

If we substitute the above expansion for the occupied orbitals into Eq.
(5.118) and make repeated use of Eq. (1.40), it can be shown that the exact
wave function is

‘(D0> = IUAAl (‘q"o) + Z CLI‘PD + Z Cfb‘q}fi) + ) (5.1202)
ar a<h

r<s

where the coefficients ¢ are given by

Co = (UBAUAI; ra (S'IZOb)

and

s TS — o (5.120¢)

In an analogous way, coefficients of the higher excitations can be expressed
as sums of products of the singles coefficients. Note that for relauon (5.120c¢)
to hold, we must use the intermediate normalized form of |®¢). Let us
illustrate the above with an example. Suppose we have a two-electron
problem (i.e., [P0 = |x1x2>) and

]xl IX(10)> + a3|X(0)> + a4|X(0) (5.121a)
12> = ¥ + b3l + bl (5.121b)

Then by repeated applications of Eq. (1.40) one can show that

[@o> =[x + balxHD> + balxPxE
+ a3l + auxx2"> + (asbs — abs)ly
= |Wo> + b3|¥3) + b, |¥D) + as| W) + a,|¥D (5.122)
+ (azb, — azb 3), ¥is

It is then clear that

c15 = (asb, — asb;) = cjcs — cic3 (5.123)

as we claimed.
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Exercise 5.15 Repeat the above analysis using

1) = 91|X(10)> + a; X(zo)> + aslx‘°’> + aq|X (0)>
22> = by + bo|x"> + bs|x®> + bl
instead of Egs. (5.121a, b).

a. By repeated use of Eq. (1.40) show that

I(D0> = (a;b; — bm:)lxﬁ‘”xf—f’) + (aby; — b as),X(O) (O)
+ (a;by — bla4)|X(10)Xff)> + (asb, baaz)\x(ao)x(zo)
+ (asb,; — b4a2)|x(4 > + (asb, 3‘14)|X(30)X(0)>

Intermediate normalize this wave function by dividing the right-hand
side by a,b, — b,a, and then explicitly verify that Eq. (5.123) is satisfied.
b. To make contact with the general formalism, note that

a, b a, b
U - 1 1 U — 3 3
AA (az bz) and BA ( a, b4)

Note that |[U ,,| = a,b, — b,a, asrequired to make Eq. (5.120a) consistent
with the result obtained in part (a). Use the result of Exercise 1.4(f) to
evaluate U, and then verify the general result given in Eq. (5.120b) by
calculating

(UBAU;;)I 1= ci’

and showing that it is identical to the coefficient of [yx$’> obtained in
part (a).

—— — —— —

S5.3.2 The Resonance Energy of Polyenes in Hiickel Theory

We now consider an interesting application of the various many-electron
approaches just discussed. We will use them to calculate the resonance
energy of a cyclic polyene with an even number of carbon atoms (N = 2»n)
within the framework of Hiuckel theory, and then compare the predicted
results with the exact value of this quantity. The resonance energy is defined
as the difference between the exact energy of the polyene (as obtained by
diagonalizing the Hickel matrix and adding up to the occupied orbital
energies) and the energy of n localized and noninteracting double bonds or
ethylenic units. Since Hiickel theory is a one-particle theory (i.e., the effective
Hamiltonian does not contain two-particle interactions), the resonance
energy is analogous to the relaxation energy previously defined.
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To introduce notation, we briefly review the application of Hickel
theory to a cyclic polyene with N = 2n carbon atoms. Each carbon atom
contributes one electron to the z system of the molecule. The total Hamil-
tonian is approximated as a sum of one-particle terms as

H = _i heeli) (5.124)

where h_s is completely specified by its matrix elements between an ortho-
normal set of atomic orbitals ({(¢,|¢,> = .., s, v=1,..., N)as

(H);,w = H;w = <q‘$p,lheffl¢‘v> = lfv = H
=p fv=put1l
=( otherwise (5.125)
Both the parameters o and f are negative. Note that in this model only

nearest-neighbor (or “bonded™) carbon atoms interact. We seek a set of
molecular orbitals, |,>,i =1, ..., N, which are eigenfunctions of kg

heeel s> = el (5.126)
If we expand [i/,) as a linear combination of atomic orbitals as
' =ZCﬂi(d)u> i=12...,N (5.127)
g

and use the linear variational principle, we are lead to the matrix eigenvalue
problem

HC = Ce (5.128)

where the matrix elements of the Hiickel matrix, H, are given in Eq. (5.125).
Since the n molecular orbitals with smallest orbital energies are doubly
occupied, the total Hiickel energy is

n Ni2
Eo=2) =2 g, (5.129)
i=1 a

The exact wave function of the system is

l(bo> = W’I'Il C d/a% S 'f’n'In) (5.130)

where the spin orbitals are obtained by multiplying the spatial orbitals by
a spin function corresponding to spin up (no bar) or spin down (bar).

For the case of cyclic polyenes (CH)y, the Hiickel problem is analytically
soluble.!® The orbital energies are

& =0+ 26 COS (m/n) i=0,+1, +2,... , +(n— 1), n (5131)

Polyenes with N=4v + 2, v=1,2,... carbon atoms have closed-shell
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electronic configurations. In this case, the exact ground state energy is

v v v i
(gjo=2!=z_v£i=2.2 d+4ﬁ.z COS(2v+1)

t— — V¥ L= —v

= No + 4f/sin(n/N) (5.132)

For example, for benzene (N = 6, n = 3, v = 1) the ground state energy is
6o + 8p.

Exercise 5.16 Set up the Hiickel matrix for benzene and find its eigen-
values. Remember that if the carbon atoms are labeled clockwise from 1 to
6, then atoms 1 and 6 are nearest neighbors. Show that the six eigenvalues
are identical to those given by Eq. (5.131). Find the total energy and com-
pare it with the result given by Eq. (5.132).

We now turn to the localized description of polyenes. As the zeroth-
order approximation, we assume that the polyene consists of n noninteracting
double bonds or ethylenic units. To obtain the energy corresponding to this
description we note that the Hiickel matrix for ethylene is

-5 2

with eigenvalues and eigenfunctions
eV =o+ B |1D=2"Y3(¢D> + [d2)) (5.133a)
Q=oa—f |J1*)>=2"Y%¢,> — |¢.D) (5.133b)

where [1) is the bonding orbital, while [1*) is the antibonding orbital. Since
an ethylenic unit has two electrons, its energy is 2o + 2. Therefore, the
energy of n noninteracting units is

Eo = n(2x + 2B) = N + NP (5.134)

The difference between the exact energy of the polyene and this approximate
localized energy is the resonance energy. Using Egs. (5.132) and (5.134), we
have

Ex = &, — Ey, = B(4/sin(n/N) — N) (5.139)

For benzene, this expression gives Ex = 2f. In the limit that the number of
carbons becomes large (N — o0) (since sin(x} & x for small x) the resonance
energy approaches
lim Eg = Nf(4/n ~ 1) = 0.2732Nf (5.136)
N—o
Since f is negative, the resonance energy, just like the correlation energy of
a real many-electron system, is negative. Moreover, it is proportional to the
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number of particles as these become large. Therefore, only a size consistent
apprcach is suitable for the calculation of the resonance energy of large

polyenes.
To make contact with the various many-electron approaches to the

relaxation energy, we define the set of occupied (|i») and unoccupied (Ji*})
ethylenic orbitals as

> =27 (|- 1> + |d20) i=12 . (5.137a)
[*> = 27%(|¢ai- 1) — |¢20)) o (5.137b)

Using these localized orbitals, the wave function corresponding to our
zeroth-order description is

Wo> = [1T22 - - - ) (5.138)

Since the atomic orbitals are orthonormal (ie, {(¢.|¢,> = ,,), it follows
that

<‘l]> = <i*]j*> = 51‘} (5.139a)
(|j*>=0 (5.139b)

Using the matrix elements given in Eq. (5.125), it can be shown that the
nonzero matrix elements of k¢ 1n the localized basis are

(ilhegelid> = a + f = (5.140a)
(¥ b i*y = o — f = & (5.140b)
<ilh=ff¥i + 1> = B/2 (5.140c¢)
(b £ 1)*) = — /2 (5.1404)
(ilheedl (8 £ 1)*> = (i F Dlheedi*> = £5/2 (5.140€)

Exercise 5.17 Verify Egs. (5.139) and (5.140).

Finally to make contact with the general formalism previously given, we

partition h.g as
heff - ho + v (5 141)

where h, 1s defined so that the localized bonding and antibonding orbitals
are its eigenfunctions

holi> = (a + B)|i> = &) (5.142a)
holi*> = (o0 — B)]i*) = eP|i*> (5.142b)

Since the localized orbitals are orthonormal (see Eq. (5.139)), it follows from
Eq. (5.140) that the nonzero matrix elements of the perturbation v are

CGiloli+ 1> =ilo|i + 1)*) =(*oli— 1> =p/2 1 (5.143a)
C*[o[(E £ 1)*> = ilo|(i— 1)*) = (i*[v|i+ 1D = — B/2 Tho (5143
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In using the above matrix elements, it 1s important to remember that because
of the cyclic nature of the problem [n + 1> =|1) and |0)> = |n). As a con-
sistency check, let us calculate Eq = ('Y, |#|¥o) using the definition of |¥,)

in Eq. (5.138) and the above matrix elements.

Eo=2 [ Cilholt> + <ilholf>] + [Kifeli> + <ifefi>]

l=

Z [+ p) + (o + P)] =Na+ N

where we have used the fact that (i|v]i> and (ilv[i ) are zero. Note that this
result for E, agrees with that obtained in Eq. (5.134).

We are now ready to use the various many-electron theories to calculate
the resonance energy. We restrict ourselves to benzene and leave the exten-
sion to larger systems to the exercises. We begin with the IEPA because it
is the easiest. Since benzene has si1x occupied spin orbitals, we need to cal-
culate six “particle” energies e,, €1, €,, €3, €3, and e3. Since all localized
bonds are equivalent, all these pair energies are equal to, say, e; so that

Er = 6e, (5.144)

To calculate e; we consider the “particle” function [¥, ) obtained by mixing
the ground state wave function |W,)> with single excitations obtained by
promoting the electron in orbital {1) to all possible virtual orbitals,

W) = |Wo) + C1|"P D+ Cz|"Pf*> + c3|'¥Pi ) (5.145)

We did not include excitations involving spin-flips (e.g., |‘P?)) because these
do not mix with |¥,). Now consider the matrix elements

(ol = {1ho|1*) + (1le|1*> =0
(Pl |WED = (U|ho|2*) + (1[v]2*) = /2
(‘PO\#\‘PT) = {11hy|3*) + (1|v 3*Y = —p/2

where we have used Egs. (5.142) and (5.143). Note that |¥'{") does not
interact with |'\¥',,), so we need not consider it further. Moreover, since the
other two excitations have matrix elements that are negatives of each other,
we consider the normalized linear combinations 2~ V3(|¥$") + |¥{")). The
plus combination does not mix with |¥,). Introducing a new notation for
the minus combination

11> =271 — [¥7))

or in general

[£> = 27RO — [T (5.146)
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we can write the “particle” function [\, ) as

1> =[¥o> + cli) (5.147)
The corresponding “particle” equations are
Ze NEADEXS (5.148a)
G| Vo) + |H — E|tHc=ec (5.148b)
The required matrix elements are
(Pl ey =271 (5.149a)
(o — Eoft> = —38 (5.149b)

Substituting these into Eq. (5.148) and solving these in the usual way, we find

o= p(07222)

Ex(IEPA) = 6e, = 1.6858 (5.150)

which is to be compared with the exact value of 28 (i.e., the IEPA gives
849 of the exact result).

so that

Exercise 5.18 Evaluate the matrix elements given in Eq. (5.149) and fill
in the remaining steps leading to Eq. (5.150).

Exercise 5.19 a) Extend the above analysis to calculate the IEPA reso-
nance energy for a cyclic polyene with N = 2n (N > 6) carbon atoms. As
before, argue that all “particle” energies are the same so that

ER — NEI

Consider only single excitations that mix with [,). Show that the “particle”
function [¥,) is

¥ =¥ + D
where [}) is obtained from Eq. (5.146),
[1> =2730¥T — W)
Now show that
(Pl #E> =27178
as before, but that here
<ﬂf — Eolf) = —2p.
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instead of the result in Eq. (5.149b). Why the difference? Finally, solve the
resulting “particle” equations to show that

E(IEPA) = N((3/2)!/? — 1)B = 0.2247Ng.

Note that the IEPA 1s indeed size consistent and that in the limit of large N
it gives 829 of the exact resonance energy.

b) The above result is not really exact within the 1IEPA. The reason for
this is that there exist single excitations involving orbital |{1) that do not mix
with |¥,> but do mix with |}) and thus have some effect on the “particle”
energy e,. These excitations are analogous to single excitations in CI for a
real many-particle system in the sense that although single excitations do
not mix with the HF wave function because of Brillouin’s theorem, they do
mix indirectly through the double excitations. Investigate the effect of such

excitations for the case N = 10. Show that the exact “particle” function
P, is

WD =|Wo) + cift) + 3 WD + cJ¥TD
Now show that
<‘P0‘f‘q’?*> = (¥, 'yf‘qu’> =0
H — Eo|¥1) = VT — EoH’T) = —20
Tl = —B/2
Gl = — g2
AN = B2

Py

Finally, show from the resulting “particle” equations that e, is the solutton of
4e? + 14fe% + 9B%e, — 33 =0

This cubic equation can be solved to yield e, = 0.23878 so that the exact
IEPA resonance energy for N = 10 is 2.387f, which is to be compared with
the approximate result of 2.247f obtained in part (a), so that there is a 67,
difference. The exact resonance energy found from Eq. (5.135) is 2.9448 for
this case.

We now consider the use of singly excited CI to calculate the resonance
energy of benzene. The SCI wave function 1s

o

3 3
Wsa) = [Po> + X >+ Y Tl (5.151)
i=1 i=1

where [¥) is defined in Eq. (5.146); ¥> is simply the corresponding wave
function involving a spin orbital with spin down. Because of the symmetry of
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benzene, it follows that ¢, = ¢, = ¢3 = €; = C, = ¢3 = ¢. Furthermore, the
required matrix elements, wheni= 1,2, 3

(HA[F> =278 (5.152a)
(ot — Eol¥> = —3B (5.152b)
GED> = ) = GlorlE) = p/A (5.152¢)

are readily evaluated. The matrix elements for the “barred” states are
identical and (;"|.2f’|}") = 0 for all i and j. Proceeding in the standard way,
the SCI equations can be shown to be

ER(SCI) = 6(2™ '*cp) (5.153a)
27128 — Bc = EL(SCl)c (5.153b)

Solving these for E (SCI) we find
E(SCI) = ((13)"/* — 1)/2 = 1.3038 (5.154)

which 1s to be compared with the exact value of 28 for the resonance energy.
Thus SCI gives only 659 of the correct answer. Moreover, as will be seen in
Exercise 5.21, this theory is not size consistent, and it predicts that the
resonance energy of a cyclic polyene is proportional to N'/? as the number
of carbons increase. This result i1s quite analogous to the case of N non-
interacting H, molecules, where the correlation energy obtained using DCI
also has the same incorrect N-dependence.

Exercise 5.20 Verify Eq. (5.152¢), derive Eq. (5.153a,b), and solve them
to obtain the result shown in Eq. (5.154).

Exercise 5.21 Extend the above analysis to calculate the SCI resonance
energy for a cyclic polyene with N = 2n (N > 6) carbon atoms. If we restrict
ourselves to only those configurations which interact with |¥(,), then the
appropriate generalization of Eq. (5.151) 1s

|lPSCI> = llP()) + _g,l Cil?) + _Z,l Ei]?)

As discussed in Exercise 5.19b, this is not the complete SCI wave function
because there exist additional singly excited configurations which, although
they do not mix with |'¥',), they do mix with |¥). The omission of these does
not affect our qualitative conclusions. Show that the required matrix elements
are

(Pl o> =278
<ﬂ3f — Eo f> — (_zﬁ)éij
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Why are Egs. (5.152b) and (5.152c¢) different? Using these matrix elements,
show that the SCI equations are

E(SCI) = Ncp2~1/2
27128 — 2¢cf8 = E4(SCI)c
Finally, solve them to obtain
Ex(SCD) = ((1 + N/2)!2 - 1)

which is proportional to N'/? as N becomes large.

Finally, we consider the various coupled-“particle” theories. There is no
need to do a CCA calculation because we have already proved in general
that it gives the exact relaxation energy. To obtain the L-CCA and the CEPA
equations, we use the formal relationship of these methods to SCI which
was brought out by Table 5.5. Thus we can obtain the L-CCA equations by
formally setting E,(SCI) equal to zero in Eq. (5.153b). Hence

En(L-CCA) = 6¢f2~ 1/ (5.155a)
2128 _ B = (5.155b)

Solving the second equation for ¢ and substituting the result into the first,
we find

E(L-CCA) = 38 (5.156)

which grossly overestimates the exact resonance energy.
The CEPA equations are formally obtained from the SCI equations by
replacing ER(SCI) in Eq. (5.153b) by the particle energy e. Thus we have

E(CEPA) = 6e (5.157a)
e = cf2 12 (5.157b)
27128 — Bec = ec (5.157¢)

Eliminating ¢ from Eqgs. (5.157b, c¢), we obtain the following quadratic
equation for e

2¢* —2eff — 2 =0 (5.158)

Solving this for e and substituting it into Eq. (5.157a), we have
E (CEPA) = 3(3'/2 — 1) = 2.196f (5.159)

Thus CEPA gives a respectable approximation to the resonance energy of
benzene.

The results obtained by the various many-electron approaches are
summarized in Table 5.6. It can be seen that, aside from CCA, which I1s
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Table 5.6 Resonance energy of benzene

Exact 2p Percent of exact
SCI 1.303p 65
1IEPA 1.685p 84
CCA 2f3 100
L-CCA 35 150
CEPA 2.1968 110

exact, CEPA works the best. It should be emphasized that one should not
draw any conclusions about the validity or accuracy of these methods when
applied to a real many-particle problem from this table. For example,
for a six-electron system, DCI in a large basis set certainly gives more than
65% of the correlation energy. In some sense the calculation of the resonance
energy in this model 1s more demanding than the calculation of the cor-
relation energy. We certaitnly do not mean that it is computationally more
difficult but merely that our zeroth-order description here is worse than is
the HF description for a real many-electron system. In benzene all the six
nearest-neighbor atoms interact equivalently (ie, the matrix elements
between adjacent carbons are all equal to f§). In the localized description we
assume that the resonance integral is f# between atoms 1 and 2, 3 and 4, and
5 and 6, but 1s zero between 2 and 3, 4 and 5, and 6 and 1. Thus our zeroth-
order picture is poor, and a general approach like CI does not work very
well then truncated at the lowest nontrivial level. Of course, the CCA takes
full advantage of the fact that the Hamiltonian contains only single particle
interactions and, hence, is exact no matter how poor the starting point.
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