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This way completing the earlier wave-function information, see for 
instance Eq. (3.296) or Eq. (3.596), with the actual evolution amplitude 
(4.168) of the quantum propagator (Green function) for electrons in the 
valence band of solids.

The following approach will show how the already proved quite reli-
able approach of path integrals is naturally needed within the Dirac formal-
ism of quantum mechanics applied on many-particle systems, specific to 
chemical structures formed by many-electrons in valence state, by means 
of the celebrated density matrix formalism – from where there is just a 
step to the “observable” density functional theory of many-body systems.

4.4 DENSITY MATRIX APPROACH LINKING PATH INTEGRAL 
FORMALISM

4.4.1 ON MONO-, MANY-, AND REDUCED-ELECTRONIC 
DENSITY MATRICES

Given a spectral representation n
n{ }
∈N

 for a set of quantum mono-elec-
tronic states,

 ϕk kn
n
c n= ∑  (4.169)

one may employ its closure relation

 1 = ∑ n n
n

 (4.170)

to generally express the average of an observable (i.e., the operator A ) on 
a selected state as:
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while for the observable average over the entire sample the individual 
weight wk should counted to provide the statistical result:
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 (4.172)

When rewrite the global average in similar formal way as the selected 
k-average, actually in terms of it:
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we introduced in fact the density matrix elements:
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which provides the density operator:
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with the sum of diagonal matrix elements (the “trace” function)
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while the searched operatorial average now becomes:

 A
n n n A n

w

n A n

n n

A
n n

k
k

n

n



 

 



 



= = =
( )∑

∑
∑
∑

ρ ρ

ρ

ρ

ρ

' '
, '

Tr

Tr
 (4.177)



404 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

Note that in above deductions the double (independent) averages technique 
was adopted, exploiting therefore the associate sums inter-conversions to 
produce the simplified results (Park et al., 1980; Blanchard, 1982; Snygg, 
1982). Yet, this technique is equivalent with quantum mechanically factor-
ization of the entire Hilbert space into sub-spaces, or at the limit into the 
subspace of interest (that selected to be measured, for instance) and the 
rest of the space being thus this approach equivalent with a system-bath 
sample; this note is useful for latter better understanding of the stochastic 
phenomena that underlay to open quantum systems, being this the physi-
cal foundation for chemical reactivity.

Next, in the case the concerned quantum states are eigen-states, they 
fulfill the normalization constraint:

 δkk k k kn k n
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on which base the above density operator now reads with the eigen-equation
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leading with the eigen-values (as the diagonal elements) just the weights

 ϕ ϕk k kwρ =  (4.180)

as the observed values of the averaged density operator. Thus they have to 
naturally fulfill the closure probability relationship over the entire sample,

 wk
k

∑ =1  (4.181)

from where the “normalization of density operator” through its above 
Trace property of Eq. (4.176):

 Trρ =1  (4.182)

Moreover, in these eigen-conditions, the operatorial average further reads 
from Eq. (4.177):

 A A  = ( )Tr ρ  (4.183)
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Now, there appears with better clarity the major role the density opera-
tor plays in quantum measurements, since convolutes with given operator 
to produce its (averaged) measured value on the prepared eigen-states. 
Nevertheless, when the so-called pure states are employed or prepared, the 
precedent distinction between the subsystem and system vanishes, and the 
density operator takes the pure quantum mechanical form of an elemen-
tary projector:

 ρ = ≡ϕ ϕ Λ  (4.184)

This is a very useful expression for considering it associated with the 
mono-density operators when the many-fermionic systems are treated, 
although similar procedure applies for mixed (sample) states as well. There 
is immediate to see that for N formally independent partitions the Hilbert 
space corresponding to the N-mono-particle densities on pure states, we 
individually have, see Eqs. (4.176), (4.181), (4.182) and (4.184),
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i i i i i N= = =ϕ ϕ , , ,Tr 1 1  (4.185)

producing the total operator – projector constructed by their sum
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is correctly normalized to the total number of particle:
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Yet, the anti-symmetric restriction the N-fermionic state may be accounted 
from the mono-electronic states through considering Slater permutated 
(Pα) products (Putz & Chiriac, 2008; Thouless, 1972):
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for constructing the N-electronic density operator:

 ρ
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N N= Φ Φ  (4.189)

with which help the N N×  density matrix writes as (in coordinate 
representation):
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However, in practice, due to the fact the multi-particle operators have 
properties associate with number of systemic properties less than the total 
number of particle, say of order p N< , worth working with the p-order 
reduced density matrix introduced as:
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with the following useful properties (Blum, 1981):

• Normalization:
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• Recursion:
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• First order Löwdin reduction:
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where the first order density matrix casts, abstracted from general 
definition:
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By these there is already noted the major importance the first order density 
plays in computing the higher order reduced density matrices that on their 
turn enters the operatorial averages, for instance:
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A special reference worth be made in regard of the free-relativist treatment 
of many-electronic atoms, ions, bi- or poly- atomic molecules, governed 
by the working Hamiltonian:
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those terms are represented the inter-nuclear repulsion (only for mol-
ecules), free electronic motion, electron-nuclei Coulombic attraction, 
and inter-electronic Coulombian repulsion, respectively. For it, the 
average value is computed through considering electronic density of 
the first or second order only there where the electronic influence is 
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present while the degree of matrix density is fixed by the type of elec-
tronic interaction:
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There is obvious that even the second order reduced matrix has appeared,
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it may be further reduced to the first one through the above determinant 
rule:
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emphasizing therefore on the importance of the first order reduced matrix 
knowledge.

The astonishing physical meaning behind this formalism relays in the 
fact that any multi-particle interaction (two-particle interaction included) 
may be reduced to the single particle behavior; in other terms, vice-versa, 
the appropriate perturbation (including strong-coupling) of the single par-
ticle evolution caries the equivalent information as that characterizing the 
whole many-body system.
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In fact in this resides the power of the density matrix formalism: reduc-
ing a many-body problem to the single particle density matrix, abstracted 
from the single Slater determinant of Eq. (4.190) called also as Fock-Dirac 
matrix
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and the associate operator
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that is considerably simplifying the quantum problem to be solved. 
Let’s illustrate this by firstly quoting that Fock-Dirac density operator of 
Eq. (4.202) has two fundamental properties, namely:

• The idem potency:
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• The normal additivity, see Eqs. (4.187):
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while having the corresponding coordinate integral representations:
• Kernel multiplicity:
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• Many-body normalization:

 ρFD x x dx N( ) ;1
1 1 1( ) =∫  (4.206)

Remarkably, the last two identities may serve as the constraints when 
minimizing the above Hamiltonian average, here appropriately rewritten 
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employing Eqs. (4.198) and (4.200) and where all external applied poten-
tial was resumed under V x( )1  under the actual so-called Hartree-Fock trial 
density matrix energy functional
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with the (Lagrange) variational principle:
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By the functional derivative respecting the Fock-Dirac electron density 
one gets:
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which eventually transcribes at the operatorial level:

 F FD FD
� � � � � � �− − + − =ρ α α ρ α β δ

( ) ( )1 1
1 0  (4.210)

with 1δ staying for the operator of the delta-Dirac matrix δ x x'1 1−( ), while 
F  being the Fock operator corresponding to the coordinate matrix repre-
sentation (Parr & Yang, 1989):



Quantum Mechanics for Quantum Chemistry 411

 

F x x
E

x x

m
V x

HF FD

FD

' ;
' ;

( )

( )

( )1 1

1

1
1 1

2

1
2

12

( ) =
 

( )

= − ∇ +







δ ρ

δρ

�

 −( )

+ −( ) ( ) −∫

δ

δ ρ ρ

x x

x x e
r

x x dx e
rFD FD

'

' ;( )

'

( )

1 1

1 1
2

12

1
2 2 2

2

1 1

11 xx x

EXCHANGE CONTRIBUTION

' ;1 1( )
� ���������� ����������

 (4.211)

Equation (4.210) is most informative since, basing on the idem potency 
property of Eq. (4.203), through multiplying it on the right with Fock-
Dirac density operator,
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and then with the same on left side,
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and subtracting the results, it yields:
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that is equivalently of saying that Fock energy operator commutes with the 
Fock-Dirac density operator,

 F FD
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meaning that they both admit the same set of eigen-functions. This is 
nevertheless the gate for obtaining the density (matrix) functional energy 
expressions by means of finding the density (matrix) eigen-solutions only.

Yet, condition (4.215) is indeed a workable (reduced) condition raised 
from optimization of the averaged Hamiltonian of a many-electronic 
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system, since the more general one referring to the whole Hamiltonian, 
known as the Liouville or Neumann equation, is obtained employing the 
temporal Schrödinger equation:

 i
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to the evolution equation of Fock-Dirac density operator evolution:
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Lastly, note that all above properties may be rewritten since considering 
the mixed p-order reduced matrix with the form

 ρ ρ( ) ( )' ... ' ; ... ' ... ' ; ...p
p p k k

p
p p

k
x x x x w x x x x1 1 1 1( ) = ( )∑  (4.218)

as a natural extension of that characterizing the pure states. However, the 
sample statistical effects may be better considered by further expressing 
the electronic density operator and its matrix, equation and properties for 
systems in thermodynamic equilibrium (with environment), a mater in 
next section addressed.

4.4.2 CANONICAL DENSITY, BLOCH EQUATION, AND THE 
NEED OF PATH INTEGRAL

For a quantum system obeying the N-mono-electronic eigen-equations

 H Ek k k
 ϕ ϕ=  (4.219)

the probability of finding one particle in the state ϕk  at thermodynami-
cal equilibrium with others, while the state + rest of states is considered a 
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closed supra-system with no mass or charge transfer allowed, is given by 
the canonical distribution (Isihara, 1980):
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providing the mixed Fock-Dirac density with the form:
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This is a very interesting and important result motivating the quantum sta-
tistical approach of determining the density of states since it corresponds 
to the N-sample particle throughout simple N-multiplication. Note that 
Eq. (4.221) is very suited for handling since its normalization factor, the 
partition function Z β( ), obeys the consecrated expression

 Z H x e x dxHβ β β( ) = −( )





= −∫Tr exp 



 (4.222)

which is reflecting in density normalization

 N x dxρ[ ] = ( )∫ ρ 1 1  (4.223)
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being of paramount importance in density functional theory, the same as 
Eq. (4.206), because it opens the doors of observable quantities through 
electronic density rather than by means of wave function.

The recognized importance of partition function, in computing the 
internal energy as the average of the Hamiltonian of the system
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or to evaluate the free energy of the system:

 F N ZN = − ( )1
β

βln  (4.225)

is thus transferred to the knowledge of the closed evolution amplitude 
x e xH−β  , that at its turn is based on the genuine (not-normalized) den-

sity operator:

 ρ β β 

⊗ ( ) = −( )exp H  (4.226)

sometimes called also like canonic density operator.
The great importance of density operator of Eq. (4.226) is immediately 

visualized in three ways

• It identifies the evolution operator

 U t t i H t tb a b a
�

�
�, exp( ) = − −( )





 (4.227)

on the ground of Wick equivalence relationship of Eqs. (4.33) or 
(4.124), which allows the transformation of the Schrödinger into 
Heisenberg or Interaction pictures for better describing the quantum 
interactions;

• It produces the so-called Bloch equation (Bloch, 1932) by taking its 
β − derivative,
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that identifies with the Schrödinger equation for genuine density 
operator
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through the same Wick transformation given by Eqs. (4.33) or 
(4.124), thus providing the quantum-mechanically to quantum-
statistical equivalence.

• Fulfills the (short times, higher temperature) so-called Markovian 
limiting condition:
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β

ρ β
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1� �  (4.230)

a very useful constraint for developing either the perturbation or the 
variational formalism respecting electronic density and/or partition 
function, see bellow.

In the frame of coordinate representation the Bloch problem, i.e., dif-
ferential equation and its initial (Cauchy) condition, looks like:
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 (4.231)

Solution of this system is a great task in general case, unless the perturba-
tion method is undertaken for writing the Hamiltonian a sum of a free and 
small interaction components,

 H H H  = +0 1  (4.232)

for which the free Hamiltonian solution is completely known, say

 ρ β β 

0 0( ) = −( )exp H  (4.233)
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In these conditions, one may firstly write:
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where the inter-Hamiltonian components were considered to freely com-
mute as per whish; then, the Eq. (4.234) is integrated on the realm 0,β[ ] 
to get:

 e e H dH Hβ β
β

ρ β β ρ β β
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0
⊗ ⊗( ) − = − ( ) ( )∫ ' ' ' '  (4.235)

rearranged under the perturbative fashion:

 ρ β ρ β ρ β β β ρ β β
β
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' ' ' 'H d  (4.236)

in the form reminding by the Lippmann-Schwinger equation for the per-
turbed dynamical wave-function (Messiah, 1961), with ρ β β

0 −( )'  play-
ing the role of the retarded Green function G t tb a0 −( ) (Feynman, 1972). 
Yet, expression (4.236) may be more generalized for the p-order approx-
imation throughout choosing various p-paths of spanning the statistical 
realm 0,β[ ] by intermediate sub-intervals:

 β β β β β β= > > > > > =+n n1 2 1 0 0...  (4.237)

leading wit the expansion:
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or in coordinate representation:
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for a parallel space discrimination of the spatial interval x x',[ ] through the 
subdivisions:

 x x x x x x xn n' ...= > > > > > =+1 2 1 0  (4.240)

Such slicing procedure in solving the Bloch equation (4.231) for canonic 
density solution (4.239) seems an elegant way of avoiding the self-consis-
tent equation (4.236). Therefore, it may further employed through recon-
sidering the problem (4.231) in a slightly modified variant, namely within 
the temporal approach
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where the variable u = β was considered for the time dimension.
Now, in the first instance the new problem has the formal total solution

 ρ⊗ ( ) = − ( )





x x u H x u'; ; exp '1


 (4.242)

that being of exponential type allows for direct slicing through factoriza-
tion. That is, when considering the space division given by coordinate cuts 
of Eq. (4.240), and assuming the times flows equally on each sub-interval 
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in quota of ε , u n= +( )1 ε, the density solution (4.242) may be written as a 
product of intermediary solutions:
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where we introduced the chained covariant density product:
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and the extended integration metric:
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The general canonic solution (4.243) is called as the path integral solu-
tion for the Bloch equation (4.241), being therefore as a necessity when 
looking to general solutions for a given Hamiltonian. It gives general solu-
tion for electronic density (4.226) since accounting for all path connecting 
two end-points either in space and time (or temperatures) through in prin-
ciple an infinite intermediary points; this way the resulted path integral 
comprises all quantum information contained by the particle’ evolution 
between two states in thermodynamical equilibrium with environment (the 
other mono-particle states). However, once the canonical density evalu-
ated through computed its path integral the associate mixed density matrix 
may be immediately written employing the operatorial form (4.221) to 
actual spatial representation

 ρ ρN x x u N
Z u

x x u'; ; '; ;( ) =
( ) ( )⊗  (4.246)
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with the path integral based partition function written in accordance with 
Eq. (4.222):

 Z u x x u dx( ) = ( )⊗∫ ρ ; ;  (4.247)

while preserving the general DFT normalization condition:

 ρN x x u dx N; ;( ) =∫  (4.248)

This way the general algorithm linking path integral to density matrix to 
electronic density employed by DFT for computing various density func-
tionals (energies, reactivity indices) for characterizing chemical structure 
and reactivity was established, while emphasizing the basic role the path 
integral evaluation has in analytical evaluations towards a conceptual 
understanding of many-electronic quantum systems in their dynamics and 
interaction.

Being thus established the role and usefulness of path integral in density 
functional theory the next section will give more insight in appropriately 
defining (constructing) quantum chemical modern theories as are Hartree-
Fock and density functional formalisms, being nowadays employed in 
various computational and conceptual schemes and applications for large 
classes of physico-chemical systems.

4.5 ROOTS OF SELF-CONSISTENT METHODS IN QUANTUM 
CHEMISTRY

Very often, the famous words of Dirac, i.e., “The underlying physical 
laws necessary for the mathematical theory of a large part of physics and 
the whole of chemistry are thus completely known”, are quoted by theo-
rists in physics when they like to underline that chemistry is in principle 
solved by the basics of quantum mechanics so that some more interesting 
problems should be solved. Despite this, from 1929 nowadays, quantum 
physics of atoms and molecules largely turns into quantum chemistry, an 
interdisciplinary discipline that still struggles with the elucidation of the 
actual behavior of electrons in nano- and bio- systems. While the total 
success is still not in sight, the achievements in the arsenal of concepts, 




