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In summary, for the small molecules considered here, SDCI improves
SCF results considerably, but even using extended basis sets the agreement
with experiment 1s not completely satisfactory. It is difficult to ascertain
whether this is primarily due to the inadequacy of the basis sets or the SDCI
approach itself. As will be discussed in the Section 4.6, for larger systems
SDCIT becomes increasingly poor due to inherent limitations of this method.

4.4 NATURAL ORBITALS AND THE ONE-PARTICLE
REDUCED DENSITY MATRIX

Up to this point we have focused on determinants and configurations formed
from a set of canonical Hartree-Fock orbitals. The resulting CI expansion
unfortunately turns out to be rather slowly convergent. It is clear, however,
that one can perform a CI calculation using N-electron configurations
formed from any one-electron basis. Therefore, it is of interest to ask whether
one can find a one-electron basis for which the CI expansion is more rapidly
convergent than it is with the Hartree-Fock basis, and thus be able to obtain
equivalent results with a smaller number of configurations. The set of
natural orbitals, introduced by P.-O. Lowdin,! forms such a basis.

In order to define natural orbitals, we now consider_the first-order
reduced density matrix of an N-electron system. Given a normalized wave
function, @, then O(x,, ..., xy) P¥x,, .. ., Xy) dX, - - - dXy 1s the probability
that an electron is in the space-spin volume element dx, located at x,, while
simultaneously another electron is in dx, at x, and so on. If we are interested
only in the probability of finding an electron in dx, at x,, independent of
where the other electrons-are, then we must average over all space-spin
coordinates of the other electrons, i.e., integrate over x,, X, . .. , Xy to obtatn

p{x;) =N fdxz o dXy OXy, .. -, X)DHX, - L., Xp) (4.33)

p(x,) is called the reduced density function for a single electron in an N-
electron system. The normalization factor N is included so that the integral
of the density equals the total number of electrons,

Idx1 p(x,) = N (4.34)

We now generalize the density function p(x,) to a density matrix y(x,, X))
dehned as

(X, X)) =N fdxz odxy DXy, X, -, XN)DH(X, Xy, L L, X)) (4.35)

The matrix y(x,, x;), which depends on two continuous indices, is called
the first-order reduced density matrix or alternatively, the one-electron re-
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duced density matrix or simply the one-matrix. Note that the diagonal element
of the continuous representation of the one-matrix is the density of electrons

Y(X1, X1) = p(x4) (4.36)

Stnce y(x,, X7) 1s a function of two variables, it can be expanded in the
orthonormal basis of Hartree-Fock spin orbitals {y;} as

P(Xy, X)) = Z x:'(xl)}'ijx:‘(xrl) (4.37)
ij
where
vy = [ dxy dx xFc Y0, X0X0) (4.38)

The matrix y formed from the elements {y;;} is a discrete representation of
the one-matrix in the orthonormal basis {y;}.

Exercise 4.4 Show that y is a Hermitian matyix.

Exercise 4.5 Show that try = N.

Exercise 4.6 Consider the one-electron operator
N
i=1
a. Show that

<D0,y = [dx; [ yxs, XYy =x,

where the notation [ ],,-,, means that x] is set equal to x, after h(x,)

has operated on y(x,, x}).
b. Show that

(D|0,|D) = trhy

where

h;; = <1|h|J> = fdxl XF(x)h(x )y, (x,)

Thus the expectation value of any one-electron operator can be expressed
in terms of the one-matrix.

In the special case that @ is the Hartree-Fock ground state wave function
¥, it can be shown from the definition (Eq. (4.35)) that

THF(xla X)) = Z Xa(X1)xa(x}) (4.39)
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where the sum runs over only the spin orbitals contained in ¥,. Thus the

discrete representation of the HF one-matrix is particularly simple—y""

is diagonal with ones along the diagonal for those elements corresponding

to occupied spin orbitals and zeros for unoccupied spin orbitals,
vy =0&; I, je occupied

. (4.40)
=0 otherwise

The diagonal elements of y"F can be regarded as occupation numbers:
one for occupied spin orbitals and zero for unoccupied spin orbitals.

Exercise 4.7 Recall that in second quantization a one-electron operator

1S
¢, = > (ilh|j)ala;
y
a. Show that
yij — (fbla}a,'q))

b. Show that the matrix elements of y"'F are given by Eq. (4.40).

In general, when @ is not ¥, the discrete representation of the one-
matrix in the basis of HF spin orbitals is not diagonal. However, since y is
Hermitian, it is possible to define an orthonormal basis {#,}, related to {y,}
by a unitary transformation, in which the matrix representation of the one-
matrix is diagonal. The elements of the orthonormal set in which y is diagonal
are called natural spin orbitals. To make the above explicit, we start with

the relation between two orthonormal bases {#;} and {y,} (see Egs. (1.63)
and (1.65))

Xi= % MU = Y m U% (4.41)
Kk

Hi = Z XUk (4.42)
k

where U 1s a unitary matrix. Substituting Eq. (4.41) into Eq. (4.37), we have
Y(Xy, X7) = Z ’?k(xl)Uﬁ:y:jUﬂ’??‘(xrl)

i jkl
— Z ’?k(xl)(z (Uf)kiyljUﬂ) nr(x})
K ij

= > mX (U yU)ni(x))
k!

= 3 mX A (x7) (4.43)
kl
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where we have defined the matrix 4 as

Now since y is a Hermitian matrix, it is possible to find a unique unitary
matrix U which diagonalizes 9, i.e.,

Xy = Ois (4.45)

The corresponding spin orbitals {#,} given by Eq. (4.42) are the natural spin
orbitals. In terms of the natural spin orbitals, we can write Eq. (4.43) as

Y(Xy, X1) = ) Aagixyn(x}) (4.46)

In analogy to the HF result of Eq. (4.39), 4, is called the occupation number
of the natural spin orbital 5, in the wave function ®.

The importance of natural orbitals is tha., in a certain sense, they give
the most rapidly convergent CI expansion. That is, to obtain a given accuracy
one requires fewer configurations formed irom natural orbitals than con-
figurations formed from any other orthonormal basis. It turns out that
only configurations that are constructed from natural orbitals with large
occupation numbers make significant contributions to the energy. Thus a
natural spin orbital with a negligible occupation number may be omitted
from the CI expansion without appreciably affecting the accuracy.

We shall not mathematically show why the use of natural orbitals is
expected to improve the convergence of the CI expansion. Rather, we illus-
trate this point using a numerical example. Shavitt and coworkers performed
the following interesting study for H,O using the 39-STO basis described
in Section 4.3. First, they performed a CI calculation containing all 4120
symmetry- and spin-adapted singly and doubly excited configurations con-
structed from the canonical HF basis. From this wave function they obtained
the one-matrix and diagonalized it to determine the natural orbitals within
the SDCI approximation. Then they performed a parallel series of truncated
SDCI calculations using both the canonical and natural orbitals in order
to answer the question, what is the minimum number of configurations
needed to recover a given percent of the SDCI correlation energy? The
answers are shown in Table 4.12. The faster convergence of the CI expansion
based on natural orbitals is apparent. To obtain 609, of the SDCI correlation
encrgy, one needs only 50 configurations formed from natural orbitals, as
compared with 140 canonically based configurations. However, it can be
also seen that the advantage of natural orbitals over canonical Hartree-
Fock orbitals is only for relatively short expansions. It must be emphasized
that these results are basis-set dependent, and it is expected that the dif-
ferences between natural orbitals and Hartree-Fock orbitals are even greater
for larger basis sets.
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Table 4.12 The number of symmetry-
and spin-adapted configurations re-
quired to recover given fractions of the
SDCI correlation energy of H, O within
the 39-STO basis when canonical SCF
(MO) and natural orbitals (NO) are

used”
Number of
Configuratibns
Percent of E__, (SDCI) MO NO
20 14 6
40 52 18
60 140 S0
80 351 147 ¢
90 617 362
09 1760 1652

“I. Shavitt, B. J. Rosenberg, and S. Palalikit,
Int. J. Quantum Chem. S10: 33 (1976).

e — — r— — — — —

Exercise 4.8 For the special case of a two-electron system, the use of
natural orbitals dramatically reduces the size of the full CI expansion. If ¢/,
1s the occupied Hartree-Fock spatial orbital and ,, r=2,3,..., K are
virtual spatial orbitals, the normalized full CI singlet wave function has
the form .

D> = co|IT) + Z AR 2 >+ Z Z "D

r252

where the singly and doubly excited spin adapted configurations are defined
tn Subsection 2.5.2.

a. Show that |'®@,> can be cast into the form
@) = Zl Z Colvd;>
i=1 j=1

where C ts a symmetric K x K matrix.
b. Show that

y(x;, x1) = 2, (CCY,(wi(Dy; 1) + wiDy (1)

i
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c. Let U be the unitary transformation which diagonalizes C
U'CU =d
where (d);; = d;6;;- Show that
UCC'U = d2
d. Show that

P, x0) = 2 dF (G()EH) + L))

where

Ci = g,!f’tUti

Thus U diagonalizes the one-matrix, and hence {; are natural spatial
orbitals for the two-electron system.

e. Finally, since C is symmetric, U can be chosen as real. Show that in
terms of the natural spatial orbitals, |'®,) given in part (a) can be re-
written as

K
|1(D0) = _Zl d; |C:Zu) '

and note that this expansion contains only K terms.

Now that we have seen that the use of natural orbitals improves the
convergence of the CI expansion, we are faced with the problem of how to
exploit this in actual calculations. The difficulty is that the one-matrix and
hence the CI wave function is required to calculate natural orbitals. Thus
we can obtain the natural orbitals only after the CI calculation is complete.
However, we clearly would like to have them before we start the calculation.
Fortunately, it turns out that approximate natural orbitals are almost as
good as the exact ones. There are several schemes that take advantage of
this; here we only mention the iterative natural orbital method of Bender
and Davidson.? In this approach one performs a series of small CI calcula-
tions. The configurations used in a given calculation are constructed from
natural orbitals obtained from the wave function of the previous calculation.
Thus one starts with a CI calculation involving a small number, say 50, of
the most important configurations constructed from canonical Hartree-
Fock orbitals. Using the resulting wave function, the one-matrix is calculated
and then diagonalized to yield a set of approximate natural orbitals. Using
the most important of these natural orbitals (i.e, those with the largest
occupation numbers), one constructs a new set of 50 configurations; the
procedure is repeated until the natural orbitals and/or the energy has con-
verged. In practice, only a few iterations are performed and, in fact, the
process often begins to diverge after several iterations.>



