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4.1 MULTICONFIGURATIONAL WAVE FUNCTIONS AND
THE STRUCTURE OF THE FULL CI MATRIX

For the sake of simplicity, we assume in this chapter that our molecule of
interest has an even number of electrons and is adequately represented, to a
first approximation, by a closed-shell restricted HF determinant, |\¥,>. Sup-
pose we have solved Roothaan’s equations in a finite basis set and obtained
a set of 2K spin orbitals {y;}. The determinant formed from the N lowesi
energy spin orbitals is ['\¥,>. As we have seen in Chapter 2, we ¢an form, in
addition to [¥), a large number of other N-electron determinants from the
2K spin orbitals. It is convenient to describe these other determinants by
stating how they differ from [¥,). Thus the set of possible determinants
include I‘PO), the singly excited determinants |‘P;) (which differ from I‘PO)
in having the spin orbital y, replaced by y,), the doubly excited determinants
P75 >, etc., up to and including N-tuply excited determinants. We can use
these many-electron wave functions as a basis in which to expand the exact
many-electron wave function |®,). If |¥,) is a reasonable approximation to
@, >, then we know from the variation principle that a better approximation
(which becomes exact as the basis becomes complete) 1s
|(D0> = CollPo> + Z c|Ye) + Z CﬁiH’Zﬁ)

a<p
r<s

+ Y dR¥YaE> 4+ Y diPaed + (429
a<b<c a<b<ce<d
r<s-<tg r<s<t<y

This is the form of the full CI wave function. The restrictions on the sum-
mation indices (e.g., a < b, r < s, etc.) insure that a given excited determinant
1s included in the sum only once. When doing formal manipulations it is
sometimes convenient to remove this restriction and rewrite Eq. (4.2a) as

1 2 1 2
|Do> = co|'Fo) + (F) > o'W + (5) Y YR

ar abrs

1\? 1\?
Hl 7] X Yo + 5] 2 CovedWapea» + 7 (4.2b)
3' abc 4' abcd
rst rstu

A factor (1/n!)? is included in front of the summation involving n-tuply
excited determinants to insure that a given excitation is really counted but
once. For example, the unrestricted summations for double excitations
include the following terms

rs rs rs rys 5r Sr sr 5r
Conl 'Y ap > Cba“an ’ cabPPab , and Cba‘lea

Now, if we require the coefficient ¢’} to be antisymmetric with respect lo the
interchange of a and b or r and s just as the wave functions, then all four
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terms are equal. Thus the factor of 1/4 insures that each determinant is
counted only once.

How many n-tuple excitations are there? If we have 2K spin orbitals,
N will be occupied in |¥,» and 2K — N will be unoccupied. We can choose

: . (N .
n spin orbitals from those occupied in ['¥,) in ( ) ways. Similarly, we can
n

: . . .. (2K—N
choose n orbitals from the 2K — N virtual orbitals in ways. Thus
n

. : 2K — N
the total number of n-tuply excited determinants is (N)( . ) Even
n

for small molecules and one-electron basis sets of only moderate size, the
number of n-tuply excited determinants is extremely large for all n except
0 and L. A significant number of these determinants can be eliminated
(although in most cases not enough!) by exploiting the fact that there is no
mixing of wave functions with different spin (i.e., (‘¥ ;[#|¥;> = 0 if ['¥;> and
|'¥';> have different spin). Suppose we are interested in the singlet states of a
molecule. Then we can immediately eliminate from the trial function those
determinants which do not have the same number of x and S spin orbitals
(i.e., keep only those which are eigenfunctions of %, with eigenvalue 0).
Moreover, as we have seen in Section 2.5, by taking appropriate linear
combinations of these remaining determinants we can form spin-adapted
configurations which are eigenfunctions of #2. Thus if we are interested in
singlet states we need only include singlet spin-adapted configurations in the
trial function. Although actual calculations always use spin-adapted configu-
rations, it will be convenient, however, to develop the formalism 1n terms of
determinants, since the resulting expressions have a simpler structure.

Given the trial function of Eq. (4.2) we can find the corresponding
energies by using the linear variational method. As we have seen in Chapter 1,
this consists of forming the matrix representation of the Hamiltonian in the
basis of the N-electron functions of expansion (4.2) and then finding the
eigenvalues of this matrix. This is called the full CI matrix, and the method
is referred to as full CI. The lowest eigenvalue will be an upper bound to the
ground state energy of the system. The higher eigenvalues will be upper
bounds to excited states of the system. Here we will focus only on the lowest
eigenvalue, The difference between the lowest eigenvalue (&,) and the
Hartree-Fock energy (E,) obtained within the same one-electron basis is
called the basis set correlation energy. As the one-electron basis set approaches
completeness, this basis set correlation energy approaches the exact corre-
lation energy. The basis set correlation energy obtained by performing a full
Cl1 1s, however, exact within the subspace spanned by the one-electron basis.
Thus 1t constitutes a benchmark by which all other approaches to the
calculation of the correlation energy performed with the same basis set
should be judged. For a given one-electron basis set, full CI is the best that
one can do.
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To examine the structure of the full CI matrix it 1S convenient to rewritc
the expansion of Eq. (4.2) in a symbolic form

|Do> = co|Fo) + ¢SO + ¢p|DY + 7| TD + ¢o]O> + - - (4.3)

where |S) represents the terms involving single excitations, D) represents
the terms involving double excitations, and so on. Using this notation, the
full CI matrix 1s presented in Fig. 4.1. The following observations are
important:

1. There is no coupling between the HF ground state and single excitations
(i.e., {¥o}#|S> = 0). This is a consequence of Brillouin’s theorem (sec”
Subsection 3.3.2), which states that all matrix elements of the form
(Wo|#|W,) are zero.

2. There is no coupling between [¥,> and triples or quadruples. Similarly,
singles do not mix with quadruples. This is a consequence of the fact
that all matrix elements of the Hamiltonian between Slater determinants
which differ by more than 2 spin orbitals are zero. A corollary of this 1s
that the blocks that are not zero are sparse. For example, the symbol
(D|#|Q) represents

(D|A|Q) — (Y| | Yo

For a matrix element of this type to be nonzero, the indices a and b must
be included in the set {c, d, e, f} and the indices r and s must be included
in the set {t, u, v, w}.

3. Because single excitations do not mix directly with I‘PO), they can be
expected to have a very small effect on the ground state energy. Their
effect is not zero because they do mix indirectly; that is, they interact
with the doubles which in turn interact with |'¥,>. Although they have

%5 b 9 b # P 90
[¥o) IS ID> IT) Q>
SIS TEAD 0 (¥ |5#D) 0 0
(S| (S|#IS) (S|#|D) (ST 0
(D (D|#|D) (D[H#|T) <D|#|Q)
Tl CTIHITY  <T|#IQ> -+
Q| QI#1Q> -
CEAPEXE HEZL S
(D|#|D) — {¥ii| #| P>

Figure 4.1 Structure of the full CI matrix. The matrix 1s Hermitian and only the upper triangle
1s shown.
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almost negligible eflect on the energy of the ground state, they do influ-
ence the charge distribution and, as we shall see later, single excitations
are needed for a proper description of one-electron properties such as
the dipole moment. The situation is entirely difierent for excited-
electronic states. In the calculation of the electronic spectra of molecules
the single excitations play the primary role.

4. Because it is the double excitations that mix directly with [\¥), it is to
be expected that these excitations play an important, and, for small
systems, a predominant role in determining the correlation energy.
Moreover, it turns out that guadruple excitations are more important
than triple or single excitations if one is concerned solely with the ground
state energy.

5. All the matrix elements required for actual calculations can be found
using the rules described in Chapter 2. As mentioned previously, cal-
culations are performed using spin-adapted configurations. These have
been discussed in detail in Section 2.5 for singly and doubly excited
determinants. Some of the matrix elements in the CI matrix involving
these configurations are given in Table 4.1. They will be used several
times later 1in the book. You might like to test your facility with the rules
for evaluation of matrix elements and your stamina by checking the
entries in the table.

Table 4.1 Some matrix elements between singlet symmetry-adapted
configurations constructed from real orbitals

SINGLE EXCITATIONS
(Po# W) =0
YL — Eo|'Ys) = (&, — £)6,50m — (rs|ba) + 2(ra|bs)

DOUBLE EXCITATIONS

(ol 'Y = K,

(Yol ] Wiy = 2V (sa|ra)

(Vo|#|' Y5> = 2Y*(rb|ra)

(Yo|l# "oy = 3Y*((ralsb) — (rb]sa))
(Wo|#\°Wi> = (ra|sb) + (rb|sa)

CYTIH — Eg|' Vo) =2e, — )+ Jgg +J,, —4J,, + 2K,

CWE|H —E|' YD =¢,+6,—26,+J,, + I+ K, —2J,—2J..+K,+ K,
W — Eg|'" V7> =26, — e, — g+ Jpp + T+ Kp — 20— 20,0 + K, + K,
CAVR|H — Eg|*Wia) =¢, + & — 8, — &, +Jop + J,s — Ky

Bl Krs N Jsb — Jsa T er - Jrn + %(Ksb + Ksa + Krb + Kl"ﬂ)

<B‘P;F!‘)|"# T Eﬂlﬂq]ﬁ) =& tE —E — & + Jab + Jrs + Kﬂb
+ Krs — Js - Jsa - Jrl? - Jra + %(K.sb + Ksa + Krb + Krﬂ)

AV A PYES = 3/HVHK,, — Ky, — Ky + K,
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4.1.1 Intermediate Normalization and an Expression for the
Correlation Energy

Now that we have examined the general features of the full CI matrix, we
will study the CI formalism 1n greater detail, as applied to the ground state
of the system. When |'¥,,) is a reasonable approximation to the exact ground
state wave function |®,), the coefficient ¢, in the CI expansion (see Eq. (4.2))
will be much larger than any of the others. It is convenient to write |®@,) in
an intermediate normalized form

[@o> = |¥o> + Z ¥ + ) Y.

c<d
t<u
tuy Iuv tuvw ruvw ..
+ Z cde"Pch Z cdef,‘Pcdef (4®
c<d<e c<d<e<f
t<u<rv t<u<py<w

Because

<(I)0‘(I)0> =1+ Z (c')z 4 Z (Ctu 2 |

c<d
f<<u

this wave function is not normalized. However, it has the property that
(Fo|Dp> =1 (4.5)

Given the intermediate normalized |®,> we can always normalize it, if we
so desire, by multiplying each term in the expansion by a constant (i.e.,
D> = ¢ |(I)0) chosen so that (@ |P,> = 1))

As discussed in Chapter 1, an equivalent formulation of the linear
variation method is simply to write

JfI(I)O> = éﬁolq)o) (4.6)

where (@, is given by Eq. (4.4) and then successively multiply this equation
by (Fol, Wil {¥iil, etc. Before we do this, it is convenient to rewrite Eq. (4.6)
by subtracting E,|®,> from both sides to obtain

(A — Eo)lq)o) = (6o — Eo)'(bo> = EcnrrI(I)()) (4.7)

where E__ . is the correlation energy. If we multiply both sides of this equa-
tion by (‘¥,,| we obtain

<‘POI'}f T E0|(I)O> = Ecnrr<‘P0l(I)O> - Ecurr (4'8)

where we have used the fact that |®,) is intermediately normalized. Now
consider the left-hand side of the equation. Using the expansion in Eq. (4.4),
we have

(Wo|H# — Eo|®@y> =<¥o|# —E, ("PO>+Z AP+ Y S+ )

c<d
t<u

= ¥ | (49)

c<d
T <<u
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where we_have used Brillouin’s theorem ((\o|5#|'¥:) = 0) and the fact that
triple and higher excitations do not mix with |¥,> because they differ from
I‘PO) by more than two spin orbitals. Combining Egs. (4.8) and (4.9) we have
the following explicit expression for the correlation energy:

Ecore = ), ¥ o|#| Ve (4.10)

a<hp
r<s

Thus the correlation energy is determined solely by the coefhicients of the
double excitations in the intermediate normalized CI function. This does
not mean that only double excitations need to be included for an exact CI
description of the ground state; the coefficients {c};} are affected by the
presence of other excitations. To see this, multiply Eq. (4.7) by ('} to obtain

<‘P:1 H — EO'(I)()) — Ecurr<‘P:r'(I)0>

Using the expansion for (®,> and Brillouin’s theorem this becomes

Z G H — Eo|P> + Y VLAY + ) oo | Waaed
e O
= E oCa (4.11)

This expression can be simplified somewhat by taking into account the fact
that there are nonzero matrix elements between singles and triples only

when a equals ¢, d, or e and r equals ¢, u, or v. This allows us to rewrite Eq.
4.11) as

c<d c<d
t<u t <y

= EconCa (4.12)

The important point about this equation is that it contains, and hence
couples, the coefficients of the singles, doubles, and triples. If we continue
the above procedure by multiplying Eq. (4.7) by <¥5|, (Vi etc., we would
end up with a hierarchy of equations that must be solved simultaneously
o obtain the correlation energy. This set of coupled equations is extremely
large if all possible excitations are included. This is just another way of saying
that the full CI matrix is extremely large. After illustrating the formalism
developed so far, by applying it to minimal basis H,, we will return to the
problem of truncating the CI matrix to a manageable size.

Exercise 4.1 Obtain Eq. (4.12) from (4.11). It will prove convenient to
use unrestricted summations.

Let us consider the application of the above formalism to minimal
basis H,. Since this is a two-electron system, full CI involves only single and
double excitations. Recall that in this model we have two molecular orbitals:
\/, is the bonding orbital with gerade symmetry and v/, is the antibonding
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orbital with ungerade symmetry. The HF ground state wave function is

¥o> = 1> = 11D (4.13)

Since we have four spin orbitals (y; =1, x, =1, ¥3 =2, x4 = 2) we can
form in addition to |'¥,), five other determinants namely, [12), |21), [12),
|21, and |22). Using these determinants, the full CI wave function can be
written as

D> =|Wod + 221> +cZ12) + 312> + 321D +c1322)  (4.14)

We can rewrite this in terms of spin-adapted configurations as follows.
Since the exact ground state is a singlet we know that only configurations
of singlet symmetry need be included in the expansion. The doubly excited
state 1s a closed-shell and hence a singlet. Out of the four singly excited
determinants |21, |12}, |12, [21) we can form one singlet state and three
triplets. The singlet state is (see Eq. (2.260))

P> =2"Y¥12) + |21))
Thus the spin-adapted expansion is
D> = [Fo> + ci]'P2) + c3122) (4.15)

Finally, we can simplify the expansion further by taking into account
the spatial symmetry of the system. Both [¥,> and |22} are of gerade sym-
metry while |"¥?%) is of ungerade symmetry because it contains one orbital
with gerade and one with ungerade symmetry. Therefore, this single excita-
tion will not mix with [¥,) or [22). Thus we can write the CI expansion,
which is both symmetry and spin-adapted, as

I(D()) = I‘P()) + ¢3% [22) “Pg} + C%%H’ﬁ) (4.16)

Given this trial function, the variational method tells us that the corre-
sponding energy (&) is the lowest eigenvalue of the CI matrix

=(<‘Polaf’\‘Po> (Fol#]¥13 )
PHIA > CFHIAEID

The required matrix elements are readily evaluated using the rules o
Chapter 2. Since the molecular orbitals are real, we have

<T0|°#|TO>=E =2h11 +J11 (4.173)
(Pol#|¥3y=1T|[22>=(12[12)=K 1, =¥} #|¥,) (4.17b)
(V3| #|YI>=2hy5+ 3, (4.170)

Using the HF orbital energies (see Egs. (3.130) and (3.131))
€, =hy; +J44
€, =hy, +2J4, — K3
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the diagonal matrix elements can be rewritten as
EO — 281 — Jll (4.17(1)
(P3| #| W22 = 28, — 4J 1, + T, + 2K (4.17¢)

Having evaluated the matrix elements, it is a straightforward matter to
find the lowest eigenvalue of the matrix using the secular determinant or
unitary transformation approach discussed in Chapter 1. Here we wish to
solve the problem by a somewhat different but completely equivalent way,
that we shall use many times in this bqok. We start by substituting Eq. (4.16)
into Eq. (4.7):

(# — Eo)(|¥0> + ¢|¥11)) = Ecord|¥o> + c[¥1D) (4.18)
where we have written ¢ for ¢2Z. Multiplying this equation by {‘¥,| we have
Ecorr = c{¥|#|¥11)> = Ky, (4.193)

Similarly, multiplying by (‘Pﬁl we have

CPHIH Y o> + (P A — E|¥iT) = Ecor (4.19b)
Defining
28 = (V3|# — Eo|¥23) = 2e, — &) + J 1y + 5, — 4T 15 + 2Ky, (4.20)

where we have used the matrix elements in Eq. (4.17), we can rewrite Eq.
(4.19b) as

K12 + ZAC = CEcurr (421)

The two simultaneous equations (4.19a) and (4.21) can be combined into the

matrix equation )
= E 4.22
(K} ; ZA ) (C) COrr (C) ( )

We could have obtained this result directly from the CI eigenvalue problem:

( L, Ky, )(CO) — (Co)
K, <‘P%%Iﬁ|‘Pﬁ> €1 €1

by simply subtracting
E, 0\/cg
0 E /\¢;

from both sides, using the definition of 2A (Eq. (4.20)) and setting ¢, = 1
(intermediate normalization), § — E, = E_,,, and ¢, =c. To obtain the
lowest eigenvalue we solve Eq. (4.21) for c:

K,
Ecurr — 2A

o
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and substitute this into Eq. (4.19a) to obtain
K1,
Ecnrr — 2A

ECUI'I' =

This equation is a quadratic equation for E_,,,, which can be solved for the

lowest root, i.e.,

E,,. =A—(A? + K212 (4.23)

This is the exact correlation energy of H, within the minimal basis set of
atomic orbitals.

COIT

Exercise 4.2 Using the secular determinant approach show that the
lowest eigenvalue of the matrix '

is given by Eq. (4.23).

The exact energy of minimal basis H, is
6o = Eo + Eore = 2hyy + J 11 + A — (A* + KP))Y? (4.24)

In contrast to E,, this full CI energy properly describes the dissociation of
H,, as might be expected, since it is the exact energy in the basis. To see this,
recall that as R — oo, hy; = h,;, » E(H), where E(H) is the energy of the
hydrogen atom 1n the basis and that all molecular orbital two-electron
integrals tend to 3(¢,¢b,|p,¢1), where ¢, is a hydrogenic orbital. It then
follows that A -0 as R— oo and hence E_,, » ~K,;, = —3(¢101|P1¢1)
which exactly cancels the long range limit of J,, thus ensuring that &,
approaches 2E(H). The full CI, RHF, and UHF potential energy curves for
STO-3G H, are compared in Fig. 4.2. Note that although, in contrast to
RHF, UHF does describe dissociation properly, the UHF potential curve 1s
significantly different from the full CI one. For comparison the essentially
exact nonrelativistic results of Kolos and Wolniewicz are shown. Their
calculations, which exploit the simplifications inherent in a two-electron
system, use wave functions which explicitly contain the interelectronic dis-
tance (Le., r;,). One can see that although full CI is exact in the STO-3G
basis, 1t gives a potential curve which does not agree very well with the
exact one. Although the full CI STO-3G well depth is greater than the exact
result, this does not imply that the variation principle has been violated. The
STO-3G full CI energy of H, and the STO-3G energy of the hydrogen atom
are both higher than the corresponding exact results. However, the STO-3G
potential energy curve is obtained by subtracting the energy of two isolated
H atoms from the energy of H, and thus need not be an upper bound to the
exact curve. The STO-3G UHF and full CI well depths are greater than the
exact result because the STO-3G basis is so poor for the hydrogen atom.
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Figure 4.2 STO-3G potential energy curves for H,.

Exercise 4.3 Calculate the coefficient of the double excitation (c) in the
intermediate normalized CI wave function at R = 1.4 a.u., using the STO-3G
integrals given in Appendix D. Show analytically thatas R —» «, ¢ — —1,
and hence that at large distances the Hartree-Fock ground state and the
doubly excited configuration have equal weight in the CI ground state.
Finally, show that the CI wave function, when normalized to unity, becomes
(at R = o0)

271 (|d12> + [h261D)

where ¢, and ¢, are atomic orbitals on centers one and two, respectively.

4.2 DOUBLY EXCITED (I

For all but the smallest molecules, even with a minimal basis set, full CI is a
computationally impractical procedure. With a one-electron basis of mod-
erate size, there are so many possible spin-adapted configurations that the
full CI matrix becomes impossibly large (e.g., its dimensionality is greater
than 10° X 10%). To obtain a computationally viable scheme one must trun-



