Having defined the unrestricted density matrices \mathbf{P}^{α} , \mathbf{P}^{β} , \mathbf{P}^{T} , and \mathbf{P}^{S} we will now use these definitions to give explicit form to the unrestricted Fock matrices \mathbf{F}^{α} and \mathbf{F}^{β} . ## 3.8.4 Expression for the Fock Matrices To obtain expressions for the elements of the matrices \mathbf{F}^{α} and \mathbf{F}^{β} , we simply take matrix elements in the basis $\{\phi_{\mu}\}$ of the two Fock operators f^{α} (Eq. (3.316)) and f^{β} (Eq. (3.318)), and use expressions (3.322) to (3.326) for matrix elements of the coulomb and exchange operators. That is, $$F_{\mu\nu}^{\alpha} = \int d\mathbf{r}_{1} \; \phi_{\mu}^{*}(1) f^{\alpha}(1) \phi_{\nu}(1)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{a}^{N^{\alpha}} \left[(\phi_{\mu} \phi_{\nu} | \psi_{a}^{\alpha} \psi_{a}^{\alpha}) - (\phi_{\mu} \psi_{a}^{\alpha} | \psi_{a}^{\alpha} \phi_{\nu}) \right] + \sum_{a}^{N^{\beta}} (\phi_{\mu} \phi_{\nu} | \psi_{a}^{\beta} \psi_{a}^{\beta}) \quad (3.346)$$ $$F_{\mu\nu}^{\beta} = \int d\mathbf{r}_{1} \; \phi_{\mu}^{*}(1) f^{\beta}(1) \phi_{\nu}(1)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{a}^{N^{\beta}} \left[(\phi_{\mu} \phi_{\nu} | \psi_{a}^{\beta} \psi_{a}^{\beta}) - (\phi_{\mu} \psi_{a}^{\beta} | \psi_{a}^{\beta} \phi_{\nu}) \right] + \sum_{a}^{N^{\alpha}} (\phi_{\mu} \phi_{\nu} | \psi_{a}^{\alpha} \psi_{a}^{\alpha}) \quad (3.347)$$ To continue, we substitute the basis set expansions of ψ_a^{α} and ψ_a^{β} to get $$F_{\mu\nu}^{\alpha} = H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} \sum_{a}^{N^{\alpha}} C_{\lambda a}^{\alpha} (C_{\sigma a}^{\alpha})^{*} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} \sum_{a}^{N^{\beta}} C_{\lambda a}^{\beta} (C_{\sigma a}^{\beta})^{*} (\mu \nu | \sigma \lambda)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} (\mu \nu | \sigma \lambda)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{T} (\mu \nu | \sigma \lambda) - P_{\lambda\sigma}^{\alpha} (\mu \lambda | \sigma \nu)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} \sum_{a}^{N^{\beta}} C_{\lambda a}^{\beta} (C_{\sigma a}^{\beta})^{*} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} \sum_{a}^{N^{\alpha}} C_{\lambda a}^{\alpha} (C_{\sigma a}^{\alpha})^{*} (\mu \nu | \sigma \lambda)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} (\mu \nu | \sigma \lambda)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} (\mu \nu | \sigma \lambda)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} (\mu \nu | \sigma \lambda)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - P_{\lambda\sigma}^{\beta} (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} (\mu \nu | \sigma \lambda)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - P_{\lambda\sigma}^{\beta} (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} (\mu \nu | \sigma \lambda)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - P_{\lambda\sigma}^{\beta} (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} (\mu \nu | \sigma \lambda)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} (\mu \nu | \sigma \lambda)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} (\mu \nu | \sigma \lambda)$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)]$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)]$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)]$$ $$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\beta} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)] + \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}^{\alpha} [(\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu)]$$ If one compares these expressions with the corresponding restricted closed-shell expression (3.154), one sees that the coulomb term is identical and depends on the total density matrix. The difference is only that here one has separate representations of the α and β density matrices rather than, as in the closed-shell case, $$P^{\alpha}_{\mu\nu} = P^{\beta}_{\mu\nu} = \frac{1}{2} P^{T}_{\mu\nu} \tag{3.350}$$ The coupling of the two sets of equations is made explicit in the above expressions, i.e., \mathbf{F}^{α} depends on \mathbf{P}^{β} (through the total density matrix \mathbf{P}^{T}) and \mathbf{F}^{β} similarly depends on \mathbf{P}^{α} .