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3.1.2 The Fock Operator

The Hartree-Fock equation, as we have written it up to this point, is

b#a b#*a

[h(l) + ), A — ) Jﬁ(l)]xa(l) = €,%a(1) (3.14)

This 1s of the eigenvalue form. However, the operator in square brackets
appears to be different for every spin orbital y, on which it operates (because
of the restricted summation over b # a). Inspecting Eqgs. (3.10) and (3.11),
it 1S obvious, however, that :

[ﬂa(l) - ‘}(a(l)]Xa(l) =0 (315)

It is thus possible to add this term to (3.14), eliminate the restriction on the
summattion, and define a Fock operator f by

f(1) =h(1) + gfb(l) — A1) (3.16)

so that the Hartree-Fock equations become

x> = €y (3.17)

This is the usual form of the Hartree-Fock equations. The Fock operator
f(1) is the sum of a core-Hamiltonian operator h(1) and an effective one-
electron potential operator called the Hartree-Fock potential v"*(1),

M) =) A1) — A1) (3.18)
b

That is,
fQ) = k(1) + v"F(1) (3.19)

Sometimes it 1§ convenient to write the exchange potential in terms of
an operator Z,,, which, operating to the right, interchanges electron 1 and
electron 2. Thus

K (D) (1) = I:Jldxz xp (2)ry. 21Xa(2)] xp(1)

B I:j‘ dx, x§(2riz 2 2Xb(2)] Xa(1) (3.20)

The Fock operator 1s thus written, using #, ,, as
f(1) = h(1) + v¥*(1)
= h(l) + ¥, [dx, #ri (1l — 2102 (3.21)
b

The Hartree-Fock equation

lea) = 8a|Xa> (322)
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1s an eigenvalue equation with the spin orbitals as eigenfunctions and the
energy of the spin orbitals as eigenvalues. The exact solutions to this integro-
differential equation correspond to the “exact” Hartree-Fock spin orbitals.
In practice 1t 1s only possible to solve this equation exactly (i.e., as an integro-
differential equation) for atoms. One normally, instead, introduces a set of
basis functions for expansion of the spin orbitals and solves a set of matrix
equations, as will be described subsequently. Only as the basis set approaches
completeness, 1.€., as one approaches the Hartree-Fock Iimit, will the spin
orbitals that one obtains approach the exact Hartree-Fock spin orbitals.

While (3.22) 1s written as a linear eigenvalue equation, it might best be
described as a pseudo-eigenvalue equation since the Fock operator has a
functional dependence, through the coulomb and exchange operators, on the
solutions {y,} of the pseudo-eigenvalue equation. Thus the Hartree-Fock
equations are really nonlinear equations and will need to be solved by
iterative procedures.

Exercise 3.1 Show that the general matrix element of the Fock operator
has the form

ul flag> = <ilh|i> + § [ij|bb] — [ib|bj] = Ci|h|j) + ; Gibl|jby (3.23)

3.2 DERIVATION OF THE HARTREE-FOCK EQUATIONS

In this section we derive the Hartree-Fock equations in their general spin
orbital form, i.e., we obtain the eigenvalue equation (3.17) by minimizing
the energy expression for a single Slater determinant. The derivation makes
no assumptions about the spin orbitals. Later, we will specialize to restricted
and unrestricted spin orbitals and introduce a basis set, in order to generate
algebraic equations (matrix equations) that can be conveniently solved on a
computer. In the meantime, we are concerned only with the derivation of
the general integro-differential equations (the Hartree-Fock eigenvalue
equations), the nature of these equations, and the nature of their formal
solution. To derive the equations we will use the general and useful technique
of functional vanation.

3.2.1 Functional Variation

Given any trial function ®, the expectation value E[®] of the Hamiltonian
operator # 1s a number given by

E[®] = <(®|#|D> (3.24)

We say that E[®] is a functional of ® since its value depends on the form of



