
Chapter 2

Mathematical Tools of Quantum
Mechanics

2.1 Introduction
We deal here with the mathematical machinery needed to study quantum mechanics. Although
this chapter is mathematical in scope, no attempt is made to be mathematically complete or
rigorous. We limit ourselves to those practical issues that are relevant to the formalism of
quantum mechanics.
The Schrödinger equation is one of the cornerstones of the theory of quantum mechan-

ics; it has the structure of a linear equation. The formalism of quantum mechanics deals with
operators that are linear and wave functions that belong to an abstract Hilbert space. The math-
ematical properties and structure of Hilbert spaces are essential for a proper understanding of
the formalism of quantum mechanics. For this, we are going to review briefly the properties of
Hilbert spaces and those of linear operators. We will then consider Dirac’s bra-ket notation.
Quantum mechanics was formulated in two different ways by Schrödinger and Heisenberg.

Schrödinger’s wave mechanics and Heisenberg’s matrix mechanics are the representations of
the general formalism of quantum mechanics in continuous and discrete basis systems, respec-
tively. For this, we will also examine the mathematics involved in representing kets, bras,
bra-kets, and operators in discrete and continuous bases.

2.2 The Hilbert Space and Wave Functions

2.2.1 The Linear Vector Space
A linear vector space consists of two sets of elements and two algebraic rules:

a set of vectors and a set of scalars a, b, c, ;

a rule for vector addition and a rule for scalar multiplication.

(a) Addition rule
The addition rule has the properties and structure of an abelian group:
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If and are vectors (elements) of a space, their sum, , is also a vector of the
same space.

Commutativity: .

Associativity: .

Existence of a zero or neutral vector: for each vector , there must exist a zero vector
O such that: O O .

Existence of a symmetric or inverse vector: each vector must have a symmetric vector
such that O.

(b) Multiplication rule
The multiplication of vectors by scalars (scalars can be real or complex numbers) has these
properties:

The product of a scalar with a vector gives another vector. In general, if and are two
vectors of the space, any linear combination a b is also a vector of the space, a and
b being scalars.

Distributivity with respect to addition:

a a a a b a b (2.1)

Associativity with respect to multiplication of scalars:

a b ab (2.2)

For each element there must exist a unitary scalar I and a zero scalar "o" such that

I I and o o o (2.3)

2.2.2 The Hilbert Space
A Hilbert spaceH consists of a set of vectors , , , and a set of scalars a, b, c, which
satisfy the following four properties:

(a) H is a linear space
The properties of a linear space were considered in the previous section.

(b) H has a defined scalar product that is strictly positive
The scalar product of an element with another element is in general a complex
number, denoted by , where complex number. Note: Watch out for the
order! Since the scalar product is a complex number, the quantity is generally not
equal to : while . The scalar product satisfies the
following properties:

The scalar product of with is equal to the complex conjugate of the scalar
product of with :

(2.4)
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The scalar product of with is linear with respect to the second factor if
a 1 b 2:

a 1 b 2 a 1 b 2 (2.5)

and antilinear with respect to the first factor if a 1 b 2:

a 1 b 2 a 1 b 2 (2.6)

The scalar product of a vector with itself is a positive real number:

2 0 (2.7)

where the equality holds only for O.

(c) H is separable
There exists a Cauchy sequence n H n 1 2 such that for every of H and

0, there exists at least one n of the sequence for which

n (2.8)

(d) H is complete
Every Cauchy sequence n H converges to an element of H . That is, for any n , the
relation

lim
n m n m 0 (2.9)

defines a unique limit ofH such that

lim
n n 0 (2.10)

Remark
We should note that in a scalar product , the second factor, , belongs to the Hilbert
spaceH, while the first factor, , belongs to its dual Hilbert spaceHd . The distinction between
H and Hd is due to the fact that, as mentioned above, the scalar product is not commutative:

; the order matters! From linear algebra, we know that every vector space can
be associated with a dual vector space.

2.2.3 Dimension and Basis of a Vector Space
A set of N nonzero vectors 1, 2, , N is said to be linearly independent if and only if the
solution of the equation

N

i 1
ai i 0 (2.11)

is a1 a2 aN 0. But if there exists a set of scalars, which are not all zero, so that
one of the vectors (say n) can be expressed as a linear combination of the others,

n

n 1

i 1
ai i

N

i n 1
ai i (2.12)
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the set i is said to be linearly dependent.
Dimension: The dimension of a vector space is given by the maximum number of linearly
independent vectors the space can have. For instance, if the maximum number of linearly inde-
pendent vectors a space has is N (i.e., 1, 2, , N ), this space is said to be N -dimensional.
In this N -dimensional vector space, any vector can be expanded as a linear combination:

N

i 1
ai i (2.13)

Basis: The basis of a vector space consists of a set of the maximum possible number of linearly
independent vectors belonging to that space. This set of vectors, 1, 2, , N , to be denoted
in short by i , is called the basis of the vector space, while the vectors 1, 2, , N are
called the base vectors. Although the set of these linearly independent vectors is arbitrary,
it is convenient to choose them orthonormal; that is, their scalar products satisfy the relation
i j i j (we may recall that i j 1 whenever i j and zero otherwise). The basis is

said to be orthonormal if it consists of a set of orthonormal vectors. Moreover, the basis is said
to be complete if it spans the entire space; that is, there is no need to introduce any additional
base vector. The expansion coefficients ai in (2.13) are called the components of the vector
in the basis. Each component is given by the scalar product of with the corresponding base
vector, a j j .

Examples of linear vector spaces
Let us give two examples of linear spaces that are Hilbert spaces: one having a finite (discrete)
set of base vectors, the other an infinite (continuous) basis.

The first one is the three-dimensional Euclidean vector space; the basis of this space
consists of three linearly independent vectors, usually denoted by i , j , k. Any vector of
the Euclidean space can be written in terms of the base vectors as A a1i a2 j a3k,
where a1, a2, and a3 are the components of A in the basis; each component can be
determined by taking the scalar product of A with the corresponding base vector: a1
i A, a2 j A, and a3 k A. Note that the scalar product in the Euclidean space is real
and hence symmetric. The norm in this space is the usual length of vectors A A.
Note also that whenever a1i a2 j a3k 0 we have a1 a2 a3 0 and that none
of the unit vectors i , j , k can be expressed as a linear combination of the other two.

The second example is the space of the entire complex functions x ; the dimension of
this space is infinite for it has an infinite number of linearly independent basis vectors.

Example 2.1
Check whether the following sets of functions are linearly independent or dependent on the real
x-axis.
(a) f x 4, g x x2, h x e2x
(b) f x x , g x x2, h x x3
(c) f x x , g x 5x , h x x2
(d) f x 2 x2, g x 3 x 4x3, h x 2x 3x2 8x3

Solution
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(a) The first set is clearly linearly independent since a1 f x a2g x a3h x 4a1
a2x2 a3e2x 0 implies that a1 a2 a3 0 for any value of x .
(b) The functions f x x , g x x2, h x x3 are also linearly independent since

a1x a2x2 a3x3 0 implies that a1 a2 a3 0 no matter what the value of x . For
instance, taking x 1 1 3, the following system of three equations

a1 a2 a3 0 a1 a2 a3 0 3a1 9a2 27a3 0 (2.14)

yields a1 a2 a3 0.
(c) The functions f x x , g x 5x , h x x2 are not linearly independent, since

g x 5 f x 0 h x .
(d) The functions f x 2 x2, g x 3 x 4x3, h x 2x 3x2 8x3 are not

linearly independent since h x 3 f x 2g x .

Example 2.2
Are the following sets of vectors (in the three-dimensional Euclidean space) linearly indepen-
dent or dependent?
(a) A 3 0 0 , B 0 2 0 , C 0 0 1
(b) A 6 9 0 , B 2 3 0
(c) A 2 3 1 , B 0 1 2 , C 0 0 5
(d) A 1 2 3 , B 4 1 7 , C 0 10 11 , and D 14 3 4

Solution
(a) The three vectors A 3 0 0 , B 0 2 0 , C 0 0 1 are linearly indepen-

dent, since
a1A a2B a3C 0 3a1i 2a2 j a3k 0 (2.15)

leads to
3a1 0 2a2 0 a3 0 (2.16)

which yields a1 a2 a3 0.
(b) The vectors A 6 9 0 , B 2 3 0 are linearly dependent, since the solution

to
a1A a2B 0 6a1 2a2 i 9a1 3a2 j 0 (2.17)

is a1 a2 3. The first vector is equal to 3 times the second one: A 3B.
(c) The vectors A 2 3 1 , B 0 1 2 , C 0 0 5 are linearly independent,

since

a1A a2B a3C 0 2a1i 3a1 a2 j a1 2a2 5a3 k 0 (2.18)

leads to
2a1 0 3a1 a2 0 a1 2a2 5a3 0 (2.19)

The only solution of this system is a1 a2 a3 0.
(d) The vectors A 1 2 3 , B 4 1 7 , C 0 10 11 , and D 14 3 4 are

not linearly independent, because D can be expressed in terms of the other vectors:

D 2A 3B C (2.20)
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2.2.4 Square-Integrable Functions: Wave Functions
In the case of function spaces, a “vector” element is given by a complex function and the scalar
product by integrals. That is, the scalar product of two functions x and x is given by

x x dx (2.21)

If this integral diverges, the scalar product does not exist. As a result, if we want the function
space to possess a scalar product, we must select only those functions for which is finite.
In particular, a function x is said to be square integrable if the scalar product of with
itself,

x 2 dx (2.22)

is finite.
It is easy to verify that the space of square-integrable functions possesses the properties of

a Hilbert space. For instance, any linear combination of square-integrable functions is also a
square-integrable function and (2.21) satisfies all the properties of the scalar product of a Hilbert
space.
Note that the dimension of the Hilbert space of square-integrable functions is infinite, since

each wave function can be expanded in terms of an infinite number of linearly independent
functions. The dimension of a space is given by the maximum number of linearly independent
basis vectors required to span that space.
A good example of square-integrable functions is the wave function of quantum mechanics,
r t . We have seen in Chapter 1 that, according to Born’s probabilistic interpretation of
r t , the quantity r t 2 d3r represents the probability of finding, at time t , the particle

in a volume d3r , centered around the point r . The probability of finding the particle somewhere
in space must then be equal to 1:

r t 2 d3r dx dy r t 2 dz 1 (2.23)

hence the wave functions of quantum mechanics are square-integrable. Wave functions sat-
isfying (2.23) are said to be normalized or square-integrable. As wave mechanics deals with
square-integrable functions, any wave function which is not square-integrable has no physical
meaning in quantum mechanics.

2.3 Dirac Notation
The physical state of a system is represented in quantum mechanics by elements of a Hilbert
space; these elements are called state vectors. We can represent the state vectors in different
bases by means of function expansions. This is analogous to specifying an ordinary (Euclid-
ean) vector by its components in various coordinate systems. For instance, we can represent
equivalently a vector by its components in a Cartesian coordinate system, in a spherical coor-
dinate system, or in a cylindrical coordinate system. The meaning of a vector is, of course,
independent of the coordinate system chosen to represent its components. Similarly, the state
of a microscopic system has a meaning independent of the basis in which it is expanded.
To free state vectors from coordinate meaning, Dirac introduced what was to become an in-

valuable notation in quantum mechanics; it allows one to manipulate the formalism of quantum


