
Chapter 11

The SCF-LCAO-MO Method
and Extensions

11-1 Ab Initio Calculations

A rigorous variational calculation on a system involves the following steps:

1. Write down the hamiltonian operator Ĥ for the system.

2. Select some mathematical functional form ψ as the trial wavefunction. This form
should have variable parameters.

3. Minimize

Ē =
∫

ψ∗Ĥψdτ∫
ψ∗ψdτ

(11-1)

with respect to variations in the parameters.

The simple and extended Hückel methods are not rigorous variational calculations.
Although they both make use of the secular determinant technique from linear variation
theory, no hamiltonian operators are ever written out explicitly and the integrations in
Hij are not performed. These are semiempirical methods because they combine the
theoretical form with parameters fitted from experimental data.

The term ab initio (“from the beginning”) is used to describe calculations in which
no use is made of experimental data. In an ab initio variational method, all three steps
listed above are explicitly performed. In this chapter we describe a certain kind of
ab initio calculation called the self-consistent field (SCF) method. This is one of the most
commonly encountered types of ab initio calculation for atoms or molecules. We also
describe a few popular methods for proceeding beyond the SCF level of approximation.

The SCF method and extensions to it are mathematically and physically consider-
ably more complicated than the one-electron methods already discussed. Thus, one
normally does not perform such calculations with pencil and paper, but rather with
complicated computer programs. Therefore, in this chapter we are not concerned with
how one does such calculations because, in most cases, they are done by acquiring a
program written by a group of specialists. Rather we are concerned with a description
of the mathematical and physical underpinnings of the method. Because the method
is simultaneously complicated and rigorously defined, a special jargon has developed.
Terms like “Hartree–Fock,” or “correlation energy” have specific meanings and are
pervasive in the literature. Hence, a good deal of emphasis in this chapter is put on
defining some of these important terms.
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11-2 The Molecular Hamiltonian

In practice, one usually does not use the complete hamiltonian for an isolated molecular
system. The complete hamiltonian includes nuclear and electronic kinetic energy oper-
ators, electrostatic interactions between all charged particles, and interactions between
all magnetic moments due to spin and orbital motions of nuclei and electrons. Also
an accounting for the fact that a moving particle experiences a change in mass due to
relativistic effects is included in the complete hamiltonian. The resulting hamiltonian
is much too complicated to work with. Usually, relativistic mass effects are ignored,
the Born–Oppenheimer approximation is made (to remove nuclear kinetic energy oper-
ators), and all magnetic interactions are ignored (except in special cases where we are
interested in spin coupling). The resulting hamiltonian for the electronic energy is, in
atomic units,

Ĥ = −1

2

n∑

i=1

∇2
i −

N∑

µ=1

n∑

i=1

Zµ/rµi +
n−1∑

i=1

n∑

j=i+1

1/rij (11-2)

where i and j are indices for the n electrons and µ is an index for the N nuclei. The
nuclear repulsion energy Vnn is

Vnn =
N−1∑

µ=1

N∑

ν=µ+1

ZµZν/rµν (11-3)

In choosing this hamiltonian, we are in effect electing to seek an energy of an
idealized nonexistent system—a nonrelativistic system with clamped nuclei and no
magnetic moments. If we wish to make a very accurate comparison of our computed
results with experimentally measured energies, it is necessary to modify either the
experimental or the theoretical numbers to compensate for the omissions in Ĥ .

11-3 The Form of the Wavefunction

The wavefunction for an SCF calculation is one or more antisymmetrized products of
one-electron spin-orbitals. We have already seen (Chapter 5) that a convenient way to
produce an antisymmetrized product is to use a Slater determinant. Therefore, we take
the trial function ψ to be made up of Slater determinants containing spin-orbitals φ.
If we are dealing with an atom, then the φ’s are atomic spin-orbitals. For a molecule,
they are molecular spin-orbitals.

In our discussion of many-electron atoms (Chapter 5), we noted that certain atoms
in their ground states are fairly well described by assigning two electrons, one of each
spin, to each AO, starting with the lowest-energy AO and working up until all the
electrons are assigned. If the last electron completes the filling of all the AOs having a
given principal quantum number, n, we have a closed shell atomic system. Examples
are He(1s2) and Ne(1s22s22p6). Atoms wherein the last electron completes the filling
of all AOs having a given l quantum number are said to have a closed subshell. An
example is Be(1s22s2). Both types of system tend to be well approximated by a single
determinantal wavefunction if the highest filled level is not too close in energy to the
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lowest empty level. (Beryllium is the least successfully treated of these three at this level
of approximation because the 2s level is fairly close in energy to the 2p level.) A similar
situation holds for molecules; that is, the wavefunctions of many molecules in their
ground states are well represented by single determinantal wavefunctions with electrons
of paired spins occupying identical MOs. Such molecules are said to be closed-shell
systems. We can represent a trial wavefunction for a 2n-electron closed-shell system as

ψclosed shell =
∣∣φ1 (1) φ̄1 (2)φ2 (3) φ̄2 (4) · · ·φn (2n − 1) φ̄n (2n)

∣∣ (11-4)

where we have used the shorthand form for a Slater determinant described in Chapter 5.
For the present, we restrict our discussion to closed-shell single-determinantal wave-
functions.

11-4 The Nature of the Basis Set

Some functional form must be chosen for the MOs φ. The usual choice is to approximate
φ as a linear combination of “atomic orbitals” (LCAO), these AOs being located on the
nuclei. The detailed nature of these AOs, as well as the number to be placed on each
nucleus, is still open to choice. We consider these choices later. For now, we simply
recognize that we are working within the familiar LCAO-MO level of approximation.
If we represent the basis AOs by χ , we have, for the ith MO,

φi =
∑

j

cjiχj (11-5)

where the constants cji are as yet undetermined.

11-5 The LCAO-MO-SCF Equation

Having a hamiltonian and a trial wavefunction, we are now in a position to use the linear
variation method. The detailed derivation of the resulting equations is complicated
and notationally clumsy, and it has been relegated to Appendix 7. Here we discuss the
results of the derivation.

For our restricted case of a closed-shell single-determinantal wavefunction, the vari-
ation method leads to

F̂ φi = εiφi (11-6)

These equations are sometimes called the Hartree–Fock equations, and F̂ is often
called the Fock operator. The detailed formula for F̂ is (from Appendix 7)

F̂ (1) = −1

2
∇2

1 −
∑

µ

Zµ/rµ1 +
n∑

j=1

(2Ĵj − K̂j ) (11-7)

The symbols Ĵj and K̂j stand for operators related to the 1/rij operators in Ĥ . Ĵj is
called a coulomb operator because it leads to energy terms corresponding to charge
cloud repulsions. It is possible to write Ĵj explicitly:

Ĵj =
∫

φ∗
j (2)

(
1/r12)φj (2)dτ(2

)
(11-8)
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K̂j leads ultimately to the production of exchange integrals, and so it is called an
exchange operator. It is written explicitly in conjunction with a function on which it
is operating, viz.

K̂j φi(1) =
∫

φ∗
j (2) (1/r12)φi(2)dτ(2)φj (1) (11-9)

Notice that an index exchange has been performed. It is not difficult to see that the
expression (see Appendix 9 for bra-ket notation)

〈φi |F̂ |φi〉 = εi (11-10)

will lead to integrals such as

〈φi |Ĵj |φi〉 = 〈φi (1)φj (2) |1/r12|φi (1)φj (2)〉 = Jij (11-11)

〈φi |K̂j |φi〉 = 〈φi (1)φj (2) |1/r12|φi (2)φj (1)〉 = Kij (11-12)

which are formally the same as the coulomb and exchange terms encountered in
Chapter 5 in connection with the helium atom. Notice that, if the spins associated with
spin-orbitals φi and φj differ, Kij must vanish. This arises because integrations over
space and spin coordinates of electron 1 (or 2) in Eq. (11-12) lead to integration over
two different (and orthogonal) spin functions. On the other hand, Jij is not affected by
such spin agreement or disagreement.

It would appear from Eq. (11-6) that the MOs φ are eigenfunctions of the Fock
operator and that the Fock operator is, in effect, the hamiltonian operator. There is an
important qualitative difference between F̂ and Ĥ , however. The Fock operator is itself
a function of the MOs φ. Since the summation index j in Eq. (11-7) includes i, the
operators Ĵi and K̂i must be known in order to write down F̂ , but Ĵi and K̂i involve φi ,
and φi is an eigenfunction of F̂ . Hence, we need F̂ to find φi , and we need φi to know
F̂ . To circumvent this problem, an iterative approach is used. One makes an initial
guess at the MOs φ. (One could use a semiempirical method to produce this starting
set.) Then these MOs are used to construct an operator F̂ , which is used to solve for
the new MOs φ′. These are then used to construct a new Fock operator, which is in
turn used to find new MOs, which are used for a new F̂ , etc., until at last no significant
change is detected in two successive steps of this procedure. At this point, the φ’s
produced by F̂ are the same as the φ’s that produce the coulomb-and-exchange fields
in F̂ . The solutions are said to be self-consistent, and the method is referred to as the
self-consistent-field (SCF) method.

11-6 Interpretation of the LCAO-MO-SCF Eigenvalues

The physical meaning of an eigenvalue εi is best understood by expanding the integral

εi = 〈φi |F̂ |φi〉 (11-13)

with F̂ given by Eq. (11-7). We obtain

εi = 〈φi

∣∣∣∣−
1

2
∇2

1

∣∣∣∣φi〉 −
∑

µ

〈φi

∣∣Zu/rµ1
∣∣φi〉 +

n∑

j=1

(
2Jij − Kij

)
(11-14)
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It is common practice to combine the first two terms of Eq. (11-14), which depend
only on the nature of φi , into a single expectation value of the one-electron part of the
hamiltonian, symbolized Hii . Thus,

εi = Hii +
n∑

j=1

(2Jij − Kij ) (11-15)

The quantity Hii is the average kinetic plus nuclear-electronic attraction energy for the
electron in φi .

The sum of coulomb and exchange integrals in Eq. (11-15) contains all the electronic
interaction energy. Observe that the index j runs over all the occupied MOs. For a
particular value of j , say j = k �= i, this gives 2Jij − Kij as an interaction energy. This
means that an electron in φi , experiences an interaction energy with the two electrons
in φk of

2 〈φi(1)φk(2)|1/r12|φi(1)φk(2)〉 − 〈φi(1)φk(2) |1/r12|φk(1)φi(2)〉 (11-16)

The first part is the classical repulsion between the electron having an orbital charge
cloud given by |φi |2 and the two electrons having charge cloud |φk|2. The second part is
the exchange term which, as we saw in Chapter 5, arises from the antisymmetric nature
of the wavefunction. It enters (11-16) only once because the electron in φi , agrees in
spin with only one of the two electrons in φk , [Equation (11-15) applies because we
have restricted our discussion to closed-shell systems.]

The summation over 2Jij − Kij includes the case j = i. Here we get 2Jii − Kii .
However, examination of Eqs. (11-11) and (11-12) shows that Jii = Kii , and so we are
left with Jii . This corresponds to the repulsion between the electron in φi (the energy
of which we are calculating) and the other electron in φi . Because these electrons must
occur with opposite spin, there is no exchange energy for this interaction.

In brief, then, the quantity εi , often referred to as an orbital energy or a one-electron
energy, is to be interpreted as the energy of an electron in φi , resulting from its kinetic
energy, its energy of attraction for the nuclei, and its repulsion and exchange energies
due to all the other electrons in their charge clouds |φj |2.

11-7 The SCF Total Electronic Energy

It is natural to suppose that the total electronic energy is merely the sum of the one-
electron energies, but this is not the case in SCF theory. Consider a two-electron system.
The energy of electron 1 includes its kinetic and nuclear attraction energies and its
repulsion and exchange energies for electron 2. The energy of electron 2 includes its
kinetic and nuclear attraction energies and its repulsion and exchange energies for elec-
tron 1. If we sum these, we have accounted properly for kinetic and nuclear attraction
energies, but we have included the interelectronic interactions twice as much as they
actually occur. (The energy of repulsion, say, between two charged particles, 1 and 2, is
given by the repulsion of 1 for 2 or of 2 for 1, but not by the sum of these.) Therefore, if
we sum one-electron energies, we get the total electronic energy plus an extra measure
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of electron repulsion and exchange energy. We can correct this by subtracting this extra
measure away. Thus, for our closed-shell system

Eelec =
n∑

i=1



2εi −
n∑

j=1

(2Jij − Kij )



 (11-17)

where the summation is over the occupied orbitals. Comparing Eq. (11-17) with (11-18)
makes it evident that we can also write

Eelec =
n∑

i=1



2Hii +
n∑

j=1

(2Jij − Kij )



 (11-18)

or

Eelec =
n∑

i=1

(εi + Hii) (11-19)

To obtain the total (electronic plus nuclear) energy, we add the internuclear repulsion
energy for the N nuclei:

Etot = Eelec + Vnn (11-20)

Vnn =
N−1∑

µ=1

N∑

ν=µ+1

ZµZν

rµν

(11-21)

11-8 Basis Sets

A great deal of research effort has gone into devising and comparing basis sets for
ab initio calculations. There are essentially two important criteria:

1. We want a basis set that is capable of describing the actual wavefunction well enough
to give chemically useful results.

2. We want a basis set that leads to integrals Fij and Sij that we can evaluate reasonably
accurately and quickly on a computer.

Many types of basis set have been examined and two of these have come to dominate
the area of ab initio molecular calculations. These two, which we refer to as the gaussian
and the Slater-type-orbital (STO) basis sets, are actually very similar in many important
respects.

Let us consider the STO basis set first. The essence of this basis choice is to place
on each nucleus one or more STOs. The number of STOs on a nucleus and the orbital
exponent of each STO remain to be chosen. Generally, the larger the number of STOs
and/or the greater the care taken in selecting orbital exponents, the more accurate the
final wavefunction and energy will be.

At the least sophisticated end of the spectrum of choices is the minimal basis set of
STOs, which we encountered in Chapter 7. This includes only those STOs that corre-
spond to occupied AOs in the separated atom limit. If we choose a minimal basis set,
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then we must still decide how to evaluate the orbital exponents in the STOs. One way
is to use Slater’s rules, which are actually most appropriate for isolated atoms. Another
way is to vary the orbital exponents until the energy of the molecular system is mini-
mized. This amounts to performing a nonlinear variational calculation along with the
linear variational calculation. For molecules of more than a few atoms, this procedure
consumes much computer time, for reasons we will describe shortly, but for small
molecules (two or three first-row atoms plus a few hydrogens) it is possible to accom-
plish this task. From this, one discovers what orbital exponent best suits an STO in a
molecular environment. This leads us to the third way of choosing orbital exponents—
choose the values that were found best for each type of atom in nonlinear variational
calculations in smaller molecules.

One may improve the basis by adding additional STOs to various nuclei. Suppose,
for example, each carbon 2p AO were represented as a linear combination of two p-type
STOs, each having a different orbital exponent. An example of the basic principle
involved is indicated in Fig. 11-1. If we treat these functions independently and do a
linear variational calculation, they will both be mixed into the final wavefunction to
some degree. If the linear coefficient for the “inner” STO is much larger, it means that
the p-type charge cloud around this atom in the molecule is calculated to be fairly con-
tracted around the nucleus. To describe a more diffuse charge cloud, the wavefunction
would contain quite a lot of the “outer” STO, and not so much of the “inner” STO.

Thus, we have a linear variation procedure that, in effect, allows for AO expansion
and contraction. It is akin to optimizing an orbital exponent, but it does not require
nonlinear variation. Of course, one still has to choose the values of the “larger ζ” and
“smaller ζ” of Fig. 11-1. This is normally done by optimizing the fit to very accurate
atomic wavefunctions or by a nonlinear variation on atoms. A basis set in which every
minimal basis AO is represented by an “inner-outer” pair of STOs is often referred to
as a “double-zeta” basis set.

A further kind of extension is frequently made. In addition to the above types of STO,
one includes STOs with symmetries different from those present in the minimal basis.
This has the effect of allowing charge to be shifted in or out of bond regions in new
ways. For example, one could add p-type STOs on hydrogen nuclei. By mixing this
with the s-type STOs there, one can describe a skewed charge distribution in the regions
of the protons. We have already seen (Chapter 7) that a hydrogen atom in a uniform

Figure 11-1 � Radial functions R(r)= r exp(−ζ r) for 2p-type STOs. The larger ζ value gives an
STO more contracted around the nucleus. Hence, it is sometimes called the “inner” STO.
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electric field is polarized in a way that is reasonably well described by an s-p linear
combination. Since the hydrogen atom in a molecule experiences an electric field due
to the remainder of the molecule, it is not surprising that such p functions are indeed
mixed into the wavefunction by the variational procedure if we provide them in the
basis set. Similarly, d-type STOs may be added to atoms that, in the minimal basis set,
carried only s- and p-type STOs. Functions of this nature are often called polarization
functions because they allow charge polarization to occur within the molecule as a
result of the internally generated electric field.

It should be evident that one could go on indefinitely, adding more and more STOs to
the basis, even placing some of them in bonds, rather than on nuclei. This is not normally
done because the computing task goes up enormously as we add more basis functions.
In fact, the number of integrals to be calculated eventually increases as N4, where N is
the number of basis functions. The evaluation of integrals can be a logistic bottleneck in
ab initio calculations, and for this reason nonlinear variations (of orbital exponents) are
impractical for any but smaller molecules. Each new orbital exponent value requires
re-evaluation of all the integrals involving that orbital. In essence, a change of orbital
exponent is a change of basis set. In linear variations, the basis functions are mixed
together but they do not change. Once all the integrals between various basis functions
have been evaluated, they are usable for the remainder of the calculation.

The STO basis would probably be the standard choice if it were not for the fact
that the many integrals encountered in calculating Fij elements are extremely time
consuming to evaluate, even on a computer. This problem has led to the development of
an alternative basis set class that is based on gaussian-type functions. Gaussian func-
tions include an exponential term of the form exp(−αr2). The radial dependence of
such a function is compared to that for a hydrogenlike 1s function (which is identical to
a 1s STO) in Fig. 11-2. There are two obvious problems connected with using gaussian
functions as basis functions:

1. They do not have cusps at r = 0 as s-type hydrogen-like AOs do.

2. They decay faster at larger r than do hydrogen-like AOs.

Both of these deficiencies are relevant in molecules because, at r = 0 (on a nucleus)
and at r =∞, the molecular potential is like that in an atom, so similar cusp and asymp-
totic behavior are expected for molecular and atomic wavefunctions. Balanced against
these deficiencies is an advantage: gaussian functions have mathematical properties
that make it extremely easy to compute the integrals they produce in Fij . This has led
to a practice of replacing each STO in a basis set by a number of gaussian functions.

Figure 11-2 � Radial dependence of hydrogen-like and gaussian functions.
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By choosing several values of α in exp(−αr2), one can create a set of “primitive”
gaussian functions ranging from very compact to very diffuse, and then take a linear
combination of these to build up an approximation to the radial part of an STO function.
Multiplication by the standard θ and φ dependences (spherical harmonics) generates
p, d, etc. functions. Once this approximation is optimized, the linear combination of
gaussian functions is “frozen,” being treated thereafter as a single function insofar as
the subsequent molecular variational calculation is concerned. This linear combination
of primitive gaussian functions is called a contracted gaussian function.

Once we have a contracted gaussian function corresponding to each STO, we can go
through the same hierarchy of approximations as before—minimal basis set, double-
ζ basis set, double-ζ plus polarization functions-only now using contracted gaussian
functions in place of STOs. Typically, ab initio calculations on systems involving only
light elements, e.g., H–Ne, involve anywhere from 1 to 15 primitive gaussian functions
for each contracted gaussian function. Basis sets for heavier elements, however, can
contain more than 30 primitive gaussians for each contracted gaussian.

We have already described a certain amount of quantum-chemical jargon. Some of
the basis set descriptions that one commonly encounters in the modern literature are as
follows:

• DZP [double-ζ gaussian basis with polarization]

• STO-3G [each STO approximated as a linear combination of three gaussian prim-
itives]

• 6-31G [each inner shell STO represented by a sum of six gaussians and each valence
shell STO split into inner and outer parts (i.e., double-ζ ) described by three and
one gaussian primitives, respectively]

• 6-31G∗ [the 6-31G basis set augmented with six d-type gaussian primitives on each
heavy (Z > 2) atom, to permit polarization]

• 6-31G∗∗ [same as 6-31G∗ but with a set of gaussian p-type functions on H and He
atoms. Good for systems where hydrogen is a bridging atom, as in diborane or in
hydrogen bonds]

• 6-31+G∗ [the 6-31G∗ basis set augmented with a set of diffuse s- and p-type gaus-
sian functions on each heavy atom, to permit representation of diffuse electronic
distribution, as in anions]

• cc-pVnZ, n=D, T, Q, 5 [correlation consistent polarized valence n-ζ gaussian basis
sets. The inner shell STOs are described by single contracted gaussian functions
while the valence STOs are described by n contracted gaussian functions, n = D
for double-ζ , n = T for triple-ζ , etc. Both the number and angular momentum
symmetry type of the polarization functions are increased with each successive
correlation consistent basis set in a systematic manner. For example, the cc-pVDZ
basis set has a set of 5 d-type gaussian primitive functions on each heavy atom, while
the cc-pVTZ basis set has 2 sets of d-type gaussian functions and one set of 7 f-type
gaussian primitives. These families of basis sets are designed to converge the total
energy to the complete basis set limit for the SCF method and its extensions.]
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• aug-cc-pVnZ [cc-pVnZ basis sets augmented with one set of diffuse primitive
gaussian functions for each angular momentum symmetry present in the cc-pVnZ
basis set, to provide an accurate description of anions and weak interactions, e.g.,
van der Waals forces and hydrogen bonding.]

11-9 The Hartree–Fock Limit

It should be apparent that different choices of basis set will produce different SCF
wavefunctions and energies. Suppose that we do an SCF calculation on some molecule,
using a minimal basis set and obtain a total electronic energy E1. If we now choose
a double-ζ basis and do a new SCF calculation, we will obtain an energy E2 that
normally will be lower than E1. (If one happens to choose the first basis wisely and
the second unwisely, it is possible to find E2 higher than E1. We assume here that
each improvement to the basis extends the mathematical flexibility while including the
capabilities of all preceding bases.) If we now add polarization functions and repeat
the SCF procedure, we will find E3 to be lower than E2. We can continue in this way,
adding new functions in bonds and elsewhere, always increasing the capabilities of our
basis set, but always requiring that the basis describe MOs in a single determinantal
wavefunction. The electronic energy will decrease with each basis set improvement, but
eventually this decrease will become very slight for any improvement; that is, the energy
will approach a limiting value as the basis set approaches mathematical completeness.
This limiting energy value is the lowest that can be achieved for a single determinantal
wavefunction. It is called the Hartree–Fock energy. The MOs that correspond to this
limit are called Hartree–Fock orbitals (HF orbitals), and the determinant is called the
HF wavefunction.

Sometimes the term restricted Hartree–Fock (RHF) is used to emphasize that the
wavefunction is restricted to be a single determinantal function for a configuration
wherein electrons of α spin occupy the same space orbitals as do the electrons of
β spin. When this restriction is relaxed, and different orbitals are allowed for electrons
with different spins, we have an unrestricted Hartree–Fock (UHF) calculation. This
refinement is most likely to be important when the numbers of α- and β-spin electrons
differ. We encountered this concept in Section 8-13, where we noted that the unpaired
electron in a radical causes spin polarization of other electrons, possibly leading to
negative spin density.

11-10 Correlation Energy

The Hartree–Fock energy is not as low as the true energy of the system. The mathemat-
ical reason for this is that our requirement that ψ be a single determinant is restrictive
and we can introduce additional mathematical flexibility by allowing ψ to contain many
determinants. Such additional flexibility leads to further energy lowering.

There is a corresponding physical reason for the HF energy being too high. It is con-
nected with the independence of the electrons in a single determinantal wavefunction.
To understand this, consider the four-electron wavefunction

ψ = ∣∣φ1(1)φ1(2)φ2(3)φ2(4)
∣∣ (11-22)
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Recall from Chapter 5 that the numbers in parentheses stand for the spatial coordinates
of an electron; that is, φ1(1) really means φ1(x1, y1, z1)α(1) or φ1(r1, θ1, φ1)α(1).1 In
other words, if we pick values of r , θ , and φ for each of the four electrons and insert
them into Eq. (11-22) we will be able to evaluate each function and we will obtain
a determinant of numbers which can be evaluated to give a numerical value for ψ

and ψ2. The latter number (times dν) can be taken as the probability for finding one
electron in the volume element around r1, θ1, and φ1, another electron simultaneously
in dν2 at r2, θ2, and φ2, etc. The important point to notice is that the effect on ψ2 of
a particular choice of r1, θ1, and φ1, is not dependent on choices of r , θ , φ for other
electrons because the form of the wavefunction is products of functions of independent
coordinates. Physically, this corresponds to saying that the probability for finding an
electron in dν1, at some instant is not influenced by the presence or absence of another
electron in some nearby element dν2, at the same instant. This is consistent with the
fact that the Fock operator F̂ [Eq. (11-7)] treats each electron as though it were moving
in the time-averaged potential field due to the other electrons.

Because electrons repel each other, there is a tendency for them to keep out of
each other’s way. That is, in reality, their motions are correlated. The HF energy
is higher than the true energy because the HF wavefunction is formally incapable of
describing correlated motion. The energy difference between the HF and the “exact”
(for a simplified nonrelativistic hamiltonian) energy for a system is referred to as the
correlation energy.

11-11 Koopmans’ Theorem

Despite the fact that the total electronic energy is not given by the sum of SCF one-
electron energies, it is still possible to relate the εi’s to physical measurements. If
certain assumptions are made, it is possible to equate orbital energies with molecular
ionization energies or electron affinities. This identification is related to a theorem due
to Koopmans.

Koopmans [1] proved2 that the wavefunction obtained by removing one electron
from φk , or adding one electron to the virtual (i.e., unoccupied) MO φj in a Hartree–
Fock wavefunction is stable with respect to any subsequent variation in φk , or φj .
Notice that this ignores the question of subsequent variation of all of the MOs φ with
unchanged occupations. It is not necessarily true that they remain optimized, since
the potential they experience is changed by addition or removal of an electron. Nev-
ertheless, Koopmans’ theorem suggests a model. It suggests that we approximate the
wavefunction for a positive ion by removing an electron from one of the occupied HF
MOs for a neutral molecule without reoptimizing any of the MOs. Let us do this and
compare the electronic energies for the two wavefunctions.

For the neutral molecule, which we assume is a closed-shell system,

E =
∑

i



2Hii +
∑

j

(2Jij − Kij )



 (11-23)

1Note that φ1 in parentheses represents a coordinate of electron 1, whereas φ1 outside the parentheses represents
an MO.

2See also Smith and Day [2].
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For the cation, produced by removing an electron from φk ,

E+
k =

∑

i �=k



2Hii +
∑

j �=k

(2Jij − Kij )



 + Hkk +
∑

i �=k

(2Jik − Kik) (11-24)

The first sum in Eq. (11-24) gives the total electronic energy due to all but the unpaired
electron in φk . Hkk gives the kinetic and nuclear attraction energies for the unpaired
electron and the final sum gives the repulsion and exchange energy between this electron
and all the others. Now we note that the last sum is exactly equal to the void produced in
the first sum due to the restriction j �= k. Therefore, we can combine these by removing
the index restriction and deleting the last sum. This gives

E+
k =

∑

i �=k



2Hii +
∑

j

(2Jij − Kij )



 + Hkk (11-25)

To compare this with E of (11-23) we should remove the remaining index restriction.
We do this by allowing i to equal k in the sum and simultaneously subtracting the new
terms thus produced:

E+
k =

∑

i



2Hii +
∑

j

(2Jij − Kij )



 − Hkk −
∑

j

(2Jkj − Kkj ) (11-26)

But, by virtue of Eqs. (11-15) and (11-23), this is

E+
k = E − εk (11-27)

Hence, the ionization energy I 0
k , for ionization from the φk is

I 0
k = E+

k − E = −εk (11-28)

This illustrates that, within the context of this simplified model, the negative of the
orbital energies for occupied HF MOs are to be interpreted as ionization energies.

Another way to see the relation between I 0
k and −εk , is to recognize that the physical

interactions lost upon removal of an electron from ϕk , are precisely those that constitute
εk , [See Eq. (11-15).]

A similar result holds for orbital energies of unoccupied HF MOs and electron
affinities. (However, this is less successful in practice; see Problem 11-3.)

In actuality, the relation (11-28) is only approximately obeyed. One reason for this
has to do with our assumption that doubly occupied SCF MOs produced by a variational
procedure on the neutral molecule will be suitable for the doubly occupied MOs of the
cation as well. These MOs minimize the energy of the neutral molecule but give an
energy for the cation that is higher than what would be produced by an independent vari-
ational calculation. For this mathematical reason, we expect the Koopmans’ theorem
prediction for the ionization energy to be higher than the value predicted by taking the
difference between separate SCF calculations on the molecule and cation (which we
will symbolize �SCF). The corresponding physical argument is that use of Eq. (11-28)
views ionization as removal of an electron without any reorganization of the remaining
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TABLE 11-1 � Ionization Energies (in electron volts) of Water as
Measured Experimentally and as Predicted from SCF Calculations

SCF (near HF limit)b

Cation state Observeda Koopmans �SCF

2B2 12.62 13.79 11.08
2A1 14.74 15.86 13.34
2B2 18.51 19.47 17.61

aFrom Potts and Price [3].
bFrom Dunning et al. [4].

electronic charge. This neglects a process that stabilizes the cation and lowers the ion-
ization energy. Whichever argument we choose, we have here a reason for expecting
−ε to be an overestimate of the value obtained by independent calculations, �SCF.

Another error results from the neglect of change in correlation energy. We have seen
that the total SCF energy for the molecule is too high because the single determinantal
form of the wavefunction cannot allow for correlated electronic motion. The SCF energy
for the cation is too high for the same reason, but the error is different for the two
cases because there are fewer electrons in the cation. We expect the neutral molecule
to have the greater correlation energy (since it has more electrons)3 so that proper
inclusion of this feature would lower the energy of the neutral molecule more than the
cation, making the true I 0

k larger than that obtained by neglect of correlation. Hence,
this leads us expect �SCF to underestimate I 0

k . Since −ε overestimates �SCF, and
�SCF underestimates the ionization energy, we can expect some cancellation of errors
in using Eq. (11-28).

An illustration of these relations is provided in Table 11-1, where observed vertical
ionization energies (i.e., no nuclear relaxation), the appropriate values of −ε, and the
values of �SCF are compared.

11-12 Configuration Interaction

There are several techniques for going beyond the SCF method and thereby including
some effects of electron correlation. Some extremely accurate calculations on small
atoms and molecules, making explicit use of interparticle coordinates, were described
in Section 7-8. There is one general technique, however, that has traditionally been used
for including effects of correlation in many-electron systems. This technique is called
configuration interaction (CI).

The mathematical idea of CI is quite obvious. Recall that we restricted our SCF
wavefunction to be a single determinant for a closed-shell system. To go beyond the
optimum (restricted Hartree–Fock) level, then, we allow the wavefunction to be a linear

3This reasoning is rather naive. Significant correlation energy contribution can result from a small energy-level
separation between filled and empty MOs (rather than from merely the number of electrons), but production of a
cation should normally increase this gap and lead to reduced correlation.
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combination of determinants. Suppose we choose two determinants D1 and D2, each
corresponding to a different orbital occupation scheme (i.e., different configurations).
Then we can let

ψ = c1D1 + c2D2 (11-29)

and minimize E as a function of the linear mixing coefficients c1 and c2.
If we go through the mathematical formalism and express Ē as 〈ψ |Ĥ |ψ〉/〈ψ |ψ〉,

expand this as integrals over D1 and D2, and require ∂Ē/∂ci = 0, we obtain the same
sort of 2 × 2 determinantal equation that we find when minimizing an MO energy as a
function of mixing of two AOs. That is, we obtain

∣∣∣∣∣
H11 − ĒS11 H12 − ĒS12

H21 − ĒS21 H22 − ĒS22

∣∣∣∣∣ = 0 (11-30)

where now

Hij =
〈
Di

∣∣∣Ĥ
∣∣∣Dj

〉
(11-31)

Sij = 〈
Di |Dj

〉
(11-32)

We see that, whereas before we might have had two AOs interacting to form two
MOs, here we have two configurations (i.e., two determinantal functions) interacting to
form two approximate wavefunctions. Our example involves only two configurations,
but there is no limit to the number of configurations that can be mixed in this way.

Since each configuration D contains products of MOs, each of which is typically a
sum of AOs, the integrals Hij and Sij can result in very large numbers of integrals over
basis functions when they are expanded. This is the sort of situation where a computer
is essential, and CI on atoms and molecules, while still expensive compared to SCF,
have become routine on modern computers.

Our purpose in this chapter is not to describe how to carry out a CI calculation, but
rather to convey what a CI calculation is and what its predictive capabilities are. There-
fore, we will not concern ourselves with the mathematical complexities of evaluating
Hij and Sij .4 But we will consider one practical aspect of CI calculations, namely, how
one goes about choosing which configurations should be mixed together, and which
ones may be safely ignored.

We begin by considering the H2 molecule. The LCAO-MO-SCF method expresses
the ground state wavefunction for H2 as

ψ(1, 2) =
∣∣∣∣∣
1σg(1)α(1) 1σg(2)α(2)

1σg(1)β(1) 1σg(2)β(2)

∣∣∣∣∣ (11-33)

that is, as the configuration 1σ 2
g . The SCF procedure mixes the AO basis functions

together in the optimum way to produce the 1σg MO.
We have noted at several points in this book that, if one begins with a basis set of n

linearly independent functions, one ultimately arrives at n independent MOs. Hence,
the 1σg MO of Eq. (11-33) is but one of several MOs produced by the SCF procedure.

4In most actual calculations, the D’s are orthonormal, and Sij = δij .
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It is called an occupied MO because it is occupied with electrons in this configuration.
All the other MOs in this case are unoccupied or virtual MOs. The virtual MOs of
H2 have symmetry properties related to the molecular hamiltonian, just as does the
occupied MO. Thus, we can refer to 1σu, 2σg, 2σu, 1πu, 1πg, etc., virtual MOs of H2.
Which of these virtual MOs are produced by an SCF calculation depends on the number
and nature of the AO basis set provided at the outset. If no π -type AOs are provided,
no π -type MOs will be produced. If only a minimal basis (1sa and 1sb) is provided,
1σu will be the only virtual MO produced.

It is important to distinguish between the physical content of occupied versus virtual
SCF MOs. The SCF procedure finds the set of occupied MOs for a system leading to the
lowest SCF electronic energy. The virtual orbitals are the residue of this process. The
virtual MOs span that part of the basis set function space that the SCF procedure found
least suitable for describing ψ . The subspace is sometimes referred to as the orthogonal
complement of the occupied orbital subspace. (Note that this situation differs from that
pertaining to Hückel-type calculations, where MOs and energy levels are calculated
without regard for electron occupancy. Only after the variational procedure are electrons
added.)

Our concern with virtual MOs is due to the fact that they provide a ready means for
constructing new configurations to mix with our 1σ 2

g configuration for H2. Thus, using
some of the above-mentioned virtual MOs, we could write determinantal functions cor-
responding to the excited configurations 1σg1σu, 1σg2σg, 1σg2σu, 1σg1πu, etc.5 These
are commonly referred to as singly excited configurations because one electron has
been promoted from a ground-state-occupied MO to a virtual MO. (This is not meant
to imply that the orbital energy difference is equal to the expected spectroscopic energy
of the transition.) It is also possible to construct doubly excited configurations, such as
1σ 2

u , 1σu2σg, 2σ 2
g , 1σu2σu, 1σu1πu, etc. For systems having more electrons, one can

write determinants corresponding to triple, quadruple, etc., excitations. If one has a
reasonably large number, say 50, of virtual orbitals and, say, 10 electrons to distribute
among them, then there is an enormous number of possible configurations. A major
step in doing a CI calculation is deciding which configurations might be important in
affecting the results and ought therefore to be included.

We can gain insight into this problem by considering our minimal basis set H2
problem in more detail. We have

1σg = Ng(1sA + 1sB) (11-34)

1σu = Nu(1sA − 1sB) (11-35)

where Ng and Nu are normalization constants. The spatial part of the ground con-
figuration is

ψspace = 1σg(1)1σg(2) (11-36)

5As was shown in Chapter 5, the symmetry requirements of the wavefunction require that each of these open
shell configurations be expressed as a linear combination of two 2 × 2 determinants; for example, 1σg2σu stands
for the combination

(
1/

√
2
){∣∣1σg(1)2σ̄u(2)

∣∣ ± ∣∣1σ̄g(1)2σu(2)
∣∣}
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which expands to

ψspace = N2
g [1sA (1) 1sA (2) + 1sB (1) 1sB (2) + 1sA (1) 1sB (2) + 1sB (1) 1sA (2)]

If both electrons are near nucleus A, the first term is quite large. This may be
rephrased to say that ψ2 gives a sizable probability for finding both electrons near
nucleus A. The second term gives a similar likelihood for finding both electrons near B.
These two terms are referred to as ionic terms because they become large whenever the
instantaneous electronic dispositions correspond to H−

AH+
B and H+

AH−
B , respectively.

The last two terms cause ψ2 to be sizable whenever an electron is near each nucleus.
Hence, these are called covalent terms, and their presence means that ψ contains sig-
nificant “covalent character.” In fact, because all four terms have the same coefficient,
the configuration 1σ 2

g is said to have 50% covalent and 50% ionic character.
Is this bad? It turns out to be no problem at all when the nuclei are close together.

Indeed, in the united-atom (helium) limit, the ionic-covalent distinction vanishes. But
at large internuclear separations it is very inaccurate to describe H2 as 50% ionic. In
reality, H2 dissociates to two neutral ground state H atoms—that is, 100% “covalent,”
with an electron near each nucleus. In short, the SCF-MO description does not properly
describe the molecule as it dissociates. This means that the calculation of Ē versus
RAB for H2 will deviate from experiment more and more as RAB increases. This defect
in the SCF treatment of H2 occurs for many other molecular species also.

Can we correct this defect through use of CI? We ask the question this way: “What
configuration could we mix with 1σ 2

g in order to make the mixture of covalent and ionic

character variable?” Since 1σ 2
g expands to give us covalent and ionic terms of the same

sign, we need an additional configuration that will give them with opposite sign. Then
admixture of the two configurations will affect the two kinds of term differently. The
configuration that will accomplish this is 1σ 2

u :

1σu (1) 1σu (2) = N2
u [1sA (1) 1sA (2) + 1sB (1) 1sB (2) − 1sA (1) 1sB (2)

−1sB (1) 1sA (2)] (11-37)

Mixing these two configurations together gives

ψ (c1/c2) = c11σg (1) 1σg (2) + c21σu (1) 1σu (2)

=
(
c1N2

g + c2N2
u

)
[1sA (1) 1sA (2) + 1sB (1) 1sB (2)]

+
(
c1N2

g − c2N2
u

)
[1sA (1) 1sB (2) + 1sB (1) 1sA (2)] (11-38)

If c1/c2 is readjusted at each value of RAB to minimize Ē, it is evident that the
relative weights of covalent and ionic character in Eq. (11-38) will change to suit
the circumstances. Actual calculations on this system show that, as RAB gets large,
c1/c2 approaches a value such that c1N2

g + c2N2
u approaches zero, so that the ionic

component of ψ vanishes.
This example illustrates that CI of this sort has an associated physical picture.

It suggests that, in any CI calculation involving the dissociation (or extensive stretching)
of a covalent bond, important configurations are likely to include double excitations
into the antibonding virtual “mates” of occupied bonding MOs.
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What about other configurations for H2? What will 1σg2σg do for the calculation,
assuming now an extended basis set has produced a 2σg MO? Suppose we take as our
trial function

ψ = c11σ 2
g + c21σg2σg (11-39)

where the configurations are understood to stand for determinants. If the 1σg MO has
been produced by an SCF calculation on the ground state, and 2σg is a virtual MO from
that SCF calculation, then it is possible to show that the CI energy minimum occurs
when c2 in Eq. (11-39) is zero. In other words, these determinants will not mix when
they are combined in this way. An equivalent statement is that the mixing element
H12 = 〈1σ 2

g |Ĥ |1σg2σg〉 vanishes. Hence, the CI determinant (11-33) is already in
diagonal form, and no variational mixing will occur. This is an example of Brillouin’s
theorem, which may be stated as follows:

EXAMPLE 11-1 If D1 is an optimized single determinantal function and Dj is a
determinant corresponding to any single excitation out of an orbital φj occupied in
D1 and into the virtual subspace (orthogonal complement) of D1, then no improve-
ment in energy is possible by taking ψ = c1D1 + c2Dj .

The proof of Brillouin’s theorem is very simple. We start with a basis set that
spans a function space. An SCF calculation is performed, which produces the best
single-determinantal wavefunction we can possibly get within this function space.
This is D1. Dj differs from D1 in only one orbital, which means they differ in only
one row. A general property of determinants is that, if two of them differ in only
one row or column, any linear combination of the two can be written as a single
determinant (see Problem 11-4). This means that any combination c1D1 + c2Dj

is still expressible as a single determinant. Since Dj makes no use of functions
outside our original basis set, c1D1 + c2Dj is a single determinant within our
original function space. However, D1 is already known to be the single determinant
within this function space that gives the lowest energy, and c1D1 + c2Dj cannot
do better. QED.

A doubly excited configuration differs from D1 in two rows, and mixing such
a configuration with D1 produces a result that cannot be expressed as a single
determinant.

Because of Brillouin’s theorem, one might decide to omit all single excitations from
CI calculations. But it is important to recognize that singly excited configurations can
affect the results of CI calculations in the presence of doubly excited configurations.
This comes about because nonzero mixing elements can occur between singly and
doubly excited configurations in the CI determinant. To illustrate, let ψ0 be an SCF
single determinant, ψ1 be a singly excited configuration, and ψ2 be a “double.” Then
the CI determinant could be, assuming orthogonal determinants,

∣∣∣∣∣∣∣

H00 − E 0 H02

0 H11 − E H12

H02 H12 H22 − E

∣∣∣∣∣∣∣
= 0 (11-40)
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The zeros result from Brillouin’s theorem. However, H12 does not necessarily vanish,
and solution of this 3 × 3 determinantal equation leads to a wavefunction of the form

ψ = c0ψ0 + c1ψ1 + c2ψ2 (11-41)

with c1 not zero. ψ1 comes in on the coattails of ψ2 and is referred to as a second-
order correction. This is not a guarantee that it will be unimportant, however.
(See Example 7-4 for similar behavior in a different context.)

Another rule that is useful for recognizing configurations that may be omitted is
the rather obvious one that each configuration must share the same set of eigenval-
ues for operators commuting with the hamiltonian. That is, if ψ is to be associated
with a particular symmetry, angular momentum, spin angular momentum, etc., then
each configuration in ψ must have that same symmetry, angular momentum, etc. This
means that, for the ground state of H2, 1σ 2

g will not mix with 1σg1σu because the
latter has overall u symmetry. 1σu2σu could contribute, but the symmetrized combina-
tion corresponding to the singlet state (|1σu2σ̄u| − |1σ̄u2σu|) must be used rather than
the (positive) triplet state combination. The configuration 1σu1πu will not contribute
because it has the wrong total angular momentum.

Even with the aid of all these rules, a calculation on a molecule such as N2 or O2
using a reasonably extended basis set gives rise to an enormous number of possible
configurations. Additional rules of thumb have been found to help choose the major
configurations. It has been found, for example, that triply or higher excited configura-
tions are usually of lesser importance than doubly excited configurations. [Since the
hamiltonian contains only one- and two-electron operators, interaction elements must
vanish between the ground-state configuration and all triply or higher-excited configu-
rations. But, like singly excited configurations, these can, in principle, come in on the
coattails of doubly (or other) excited configurations.] In addition, a study of the energy
change in some process involving primarily the valence electrons (e.g., stretching N2)
really does not require calculation of the correlation energy of the 1s electrons since
they are fairly unaffected by the change. Any correlation energy for these electrons
tends to cancel itself when initial and final state energies are subtracted. Therefore, in a
CI calculation of such a process, it is reasonable to omit configurations corresponding
to excitation of a 1s electron unless high accuracy is desired.

The acronym CID refers to a CI calculation in which only all doubly excited con-
figurations are included. Inclusion of all singly and doubly excited configurations is
referred to as a CISD calculation. Full CI (FCI) means all excited configurations have
been included, and this is the limit that gives all of the correlation energy within the
chosen basis set. The combination of full CI and a complete basis gives the exact energy
(generally nonrelativistic and within the Born–Oppenheimer approximation).

11-13 Size Consistency and the Møller–Plesset
and Coupled Cluster Treatments of Correlation

Whenever certain parts of a well-defined procedure are omitted, as when full CI is trun-
cated to CID or CISD, one must consider whether systematic errors are introduced. This
is indeed the case in the above example. Suppose CID calculations are made for the
energy of N2 as a function of internuclear distance. At short distances, we treat the
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system as a 14-electron molecule, including configurations in which 12 of the electrons
are in their HF-occupied MOs. At very large distances we have two nitrogen atoms,
which we normally treat as having twice the energy of one atom. Now CID on atom A
includes the HF configuration, DA

0 , as well as doubly excited configurations in which
five of the seven electrons are in their HF-occupied AOs. Let DA

2 represent this class
of configuration. Then ψA = c0DA

0 + c2DA
2 . Atom B has a similar CID wavefunc-

tion: ψB = c0DB
0 + c2DB

2 . The wavefunction for the overall, noninteracting system is
the antisymmetrized product of these wavefunctions. It will contain terms like DA

0 DB
0 ,

DA
0 DB

2 , and DA
2 DB

2 . There are no terms present corresponding to a single excita-
tion at each atom, DA

1 DB
1 , and such terms would be present in a CID treatment of the

combined system. Also, there is a class of terms present corresponding to four pro-
moted electrons, DA

2 DB
2 , and these terms would not be present in a CID treatment of the

combined system. The dilemma is that, if we treat the system as a single 14-electron
“molecule,” which is appropriate at small R, we mix in different terms than if we treat it
as two separate atoms, which is appropriate at large R. If we choose some fairly large R

value to redefine N2 as two separate atoms, we change the nature of the CI in a discontin-
uous way at an arbitrary point. This feature of truncated CI is called the problem of size
consistency; CID and CISD methods are not size consistent. Doing separate calculations
on each of two separated atoms and combining the energies yields a different result from
doing a calculation on one system made up of two separated atoms.

A correlation method that is size consistent has been developed by Pople and
co-workers.6 It is based on perturbation theory that was introduced many years ago
by Møller and Plesset.7 This approach divides the process of treating correlation into
a series of corrections to an unperturbed starting point. If one chooses to do such a
calculation to, say, third order (MP3, standing for Møller–Plesset to third order), then
the set of configurations to be included is determined by the perturbation formulas.8 It
does not require further decision by the person doing the calculation and can be wholly
managed by a computer program. Møller–Plesset perturbation theory is different from
standard CI in at least two important respects: It is size consistent, and it is not varia-
tionally bound. One cannot assume, therefore, that going to higher and higher orders
of perturbation will cause the calculated energy to approach closer and closer to the
true energy from above.

Because of the way MP theory defines the unperturbed system, the starting point
energy (MP0) is the sum of HF one-electron energies. The first-order correction to
the energy (MP1) brings in the appropriate electronic coulomb and exchange integrals,
giving the correct HF energy. MP2 brings in contributions wherein doubly excited
configurations “interact with” (i.e., occur in the same integral with) the ground con-
figuration. MP3 adds contributions due to doubly excited configurations interacting
with each other. MP4 brings in interactions involving also single, double, triple, and
quadruple excitations. The selection of interaction terms by the perturbation formalism
is what produces size consistency, but it leaves out certain terms at each level that would
be included in a variational calculation.

In coupled cluster (CC) approaches, which are also size consistent and generally
not variationally bound, instead of including all configurations to a particular order as

6See Binkley and Pople [5].
7See Møller and Plesset [6].
8Perturbation theory is presented in Chapter 12. The present discussion avoids mathematical details.
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in MP theory, each class of excited configurations is included to infinite order. This is
accomplished via an exponential excitation operator,

�CC = eT̂ ψ0 =
[

1 + T̂ + T̂ 2

2! + T̂ 3

3! + . . .

]
ψ0 (11-42)

where ψ0 is the HF determinant for an N -electron system, and T̂ = T̂1 + T̂2 +
T̂3 + · · · + T̂N . T̂1 produces singly excited determinants, T̂2 doubly excited ones, and
so on. Because of the exponential nature of the excitation operator, each class of
excitations is included to all orders, e.g., terms in T̂2 would include products of double
excitations (T̂ 2

2 ) that would be considered a subset of the possible quadruple excitations
in CI. This is what makes CC theory size consistent. Usually coupled cluster theory
is truncated to include just T̂1 and T̂2, i.e., CCSD. One of the most accurate post-HF
methods has been shown to be the CCSD(T) method,in which a CCSD calculation is
followed by a contribution due to triple excitations (T̂3) via perturbation theory.

11-14 Multideterminant Methods

Up to this point, the methods that have been presented for describing electron cor-
relation effects have been constructed with the single determinant SCF wavefunction
as a starting point. For most molecules near their equilibrium geometries, this is a
very good zeroth-order approximation, but as we saw earlier for the H2 molecule, as
covalent bonds are stretched towards dissociation multiple determinants are required
for even a qualitative description. This puts much stronger demands on these so-called
single reference methods, and their accuracy can be much degraded or even unphysical
in these regions. In a multiconfigurational SCF (MCSCF) calculation one writes the
wavefunction as a linear combination of determinants exactly as in a CI calculation,
and the energy is minimized as a function of the linear CI coefficients. However, in
an MCSCF calculation one also simultaneously optimizes the MO coefficients of the
orbitals that are used to construct the determinants, using methods analogous to SCF
theory. Because this greatly adds to the complexity of the calculation, the number of
determinants used in MCSCF is generally much smaller than in a standard HF-based CI
calculation. In the simplest case, only the additional determinants that allow for a qual-
itative treatment of the process under study are included, e.g., one would include only
the determinants corresponding to excitations of bonding electrons into their respective
antibonding orbitals when stretching the triple bond of N2. This procedure results in
a set of MCSCF molecular orbitals (some strongly occupied, some weakly occupied)
that smoothly changes in character from equilibrium to dissociation.

In multireference CISD (MRCISD) calculations, the wavefunction is written as

ψ =
∑

i

ciψi +
∑

s

csψs +
∑

d

cdψd (11-43)

where
∑

i ciψi is the set of MCSCF reference determinants, ψs are new determinants
formed by single excitations into the virtual orbitals relative to all of the reference
determinants, and ψd are doubly excited determinants. An MRCISD calculation of this
type can yield a very balanced and accurate description of a molecule’s potential energy
surface, but often at a relatively steep cost in terms of computational requirements.
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11-15 Density Functional Theory Methods

The wavefunction ψ for an n-electron molecule is a function of 3n spatial coordinates
and n spin coordinates. From ψ we can produce the molecule’s spin-free electron
density function, ρ(1), by integrating ψ∗ψ over all of the spin coordinates and all the
the space coordinates except those for one of the electrons:9

ρ(1) =
∫

|ψ(1, 2, . . . ,N)|2dω1dτ2 . . . dτn (11-44)

which is a function of only the three spatial coordinates.10 We have seen that, in the
early days of quantum chemistry, a major challenge was the evaluation of integrals
over the interelectronic-repulsion term in the hamiltonian, as well as dealing with the
related problem of electron correlation. Several methods were devised that attempted
to approximate these quantities from the density function ρ(1), with moderate success.
However, the continuing progress in computer speed and the development of sophis-
ticated ab initio methods gradually shifted attention away from approaches using the
density function.

In 1964, proof by Hohenberg and Kohn [7] of a connection between the ground
state energy, E0, for a system and ρ0, the ground state density function,11 sparked
new interest in finding a rigorous way to go from knowledge of the attractively simple
three-dimensional density function to a value for E0.

Recall that, for a system having n electrons and N nuclei, the hamiltonian operator
for the electronic energy is

H = −1

2

n∑

i=1

∇2
i +

n∑

i=1

N∑

α=1

−Zα

riα

+
n−1∑

i=1

n∑

j=i+1

1

rij

(11-45)

The first and last terms can be written down immediately if we know how many
electrons are present, but the middle term depends on

∑N
α=1

−Zα

riα
, which is a function of

nuclear charges and locations. This quantity is called the external potential, symbolized
vext (	r), because it results from the presence of fields produced by particles not included
in the group of electrons.

Hohenberg and Kohn were able to prove that there is a uniqueness relation between ρ0
and the external potential: No two external potentials could give the same ρ0. This raises
the possibility that one could work backwards from ρ0 to find vext (	r) and then E0. The
following route comes first to mind: Integrate ρ0 to get the number of electrons n. Figure
out vext (	r) from ρ0. This would allow one to write down the hamiltonian operator.
Then, using ab initio methods, one could get to an accurate E0 and ψ0, and from ψ0
one could calculate T0, Vne0 , Vee0 , and all the other properties of interest for the system.

Two problems exist with this scenario. First, there is no generally applicable proce-
dure known for getting from ρ0 to vext (	r). We can posit that vext (	r) is a functional of
ρ0, which we symbolize vext [ρ0], but we don’t know what the functional relationship
is. Second, even if we could get back to the hamiltonian operator, it would simply

9Because ψ is antisymmetric for exchange of electrons, the density function is independent of our choice as to
which electron’s coordinates should be spared from integration.

10Recall that ω is the spin coordinate and τ is the coordinate for space and spin. dτ = dv dω.
11We henceforth suppress the electron index in ρ.
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land us back on square one: We would still have to solve the whole problem in the
traditional way. Nevertheless, the hopes raised by this uniqueness theorem have led to
the current goal of density functional theory, which is to find a procedure that takes us
from ρ to E in a rigorous way that avoids the complexities of landing on square one
and proceeding using standard ab initio methods. [8]

A subsequent relation proved by Hohenberg and Kohn [7] indicated a way to proceed.
They proved that an approximate density function, ρ0,approx , when subjected to the
(unknown) procedure that relates the exact ρ0 to the exact E0, must yield an energy
higher than the exact E0 : E0,approx ≥ E0, so a variational bound exists. Note that the
unknown process referred to here is one that assumes vext (	r) to be the same for the
analysis of ρ0 and ρ0,approx , which means that the same nuclear framework applies in
both cases.

If a procedure were known for finding E from ρ, then the existence of a variational
bound would allow a variational procedure analogous to what we have applied earlier.
One would start with a trial ρ, calculate its energy, and vary ρ to locate the ρ that gives
the lowest energy.

The barrier to proceeding is the lack of a way to get E from ρ. Hence, the devel-
opment of approximate functionals that relate the energy to the electron density is an
extremely active area of current research and probably will be for some time to come.

In analogy to wavefunction methods, the functional that connects E to ρ, E[ρ], can
be separated into an electronic kinetic energy contribution, T [ρ], a contribution due
to nuclear-electron attractions, Ene[ρ], and the electron-electron repulsions, Eee[ρ].
The latter term can be further decomposed into Coulomb and exchange terms, J [ρ]
and K[ρ]. Both the nuclear-electron attraction and the interelectronic Coulomb terms
can be easily written in terms of the density using their classical expressions as in
wavefunction methods. For an accurate treatment of the electronic kinetic energy term,
however, one must differentiate a wavefunction,12 and this has led to the practice first
proposed by Kohn and Sham [9] of expressing the density in terms of one-electron
orbitals φ (constructed numerically or from a basis set of Slater or gaussian functions).
These orbitals serve two purposes. They allow us to calculate a value of the kinetic
energy within a single Slater determinant framework similar to Hartree–Fock theory,

TS =
n∑

i=1

〈φi | − 1

2
∇2|φi〉 (11-46)

and to obtain the electron density, defined in terms of these Kohn–Sham orbitals as

ρs =
n∑

i

|φi |2 (11-47)

The final DFT energy expression is then written as

EDFT [ρ] = TS[ρ] + Ene[ρ] + J [ρ] + Exc[ρ] (11-48)

where the exchange correlation functional Exc[ρ] contains the difference between the
exact kinetic energy and TS , the nonclassical (exchange) part of electron-electron repul-
sions, K[ρ], and correlation contributions to both K[ρ] and J [ρ]. The Kohn–Sham

12As far as we know, we must differentiate a wavefunction to get kinetic energy. If there is a functional that
permits us to obtain kinetic energy directly from the density function, we might avoid having to use orbitals.
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orbitals are eigenfunctions of an effective one-electron hamiltonian that is nearly identi-
cal in form to the Fock operator in the SCF equations. In the Kohn–Sham case, however,
the HF exchange operators are replaced by the functional derivative of the exchange
correlation energy. Assuming the existence of Exc[ρ] and an initial guess for the elec-
tron density, one then solves the Kohn–Sham eigenvalue equations for the orbitals,
which can then be used to define a new electron density and effective hamiltonian.
These iterations continue until the density is converged to within a specified threshold.

The exact form of Exc[ρ] is not currently known, however, and a rapidly grow-
ing list of approximate exchange correlation functionals have appeared in the litera-
ture. Because these are all estimates of a part of the overall energy, the total energy
finally calculated is not an upper bound to the true energy. Also, DFT is not size-
consistent.

Generally, most existing exchange correlation functionals are split into a pure
exchange and correlation contribution, Ex[ρ] and Ec[ρ] and the current functional
nomenclature often reflects this with two-part acronyms, e.g., the BLYP DFT method
uses an exchange functional from Becke (B) [10] and a correlation functional by Lee,
Yang, and Parr (LYP) [11]. In principle, the exchange contribution could be calculated
exactly (for a single determinant) in the same manner as TS , but this is generally not
done since this disturbs the balance between Ex[ρ] and Ec[ρ]. In hybrid DFT, a
percentage of this exact exchange is included in Exc[ρ].

The great benefit of present day DFT methods is computational cost. With the
exchange correlation functionals commonly used, the computational effort is similar
to a SCF calculation, but since Exc[ρ] implicitly includes some amount of electron
correlation, the accuracy of DFT (depending on the chosen functional) is often similar
to that obtained with MP2 or better. The great weakness of DFT at the present time,
however, is the inability to systematically improve upon Exc[ρ] and converge towards
the exact Born–Oppenheimer energy like one might conceptually do in a wavefunction-
based CI or CC calculation, e.g., SCF, CCSD, CCSDT, CCSDTQ, etc. with sequences
of correlation consistent basis sets.

One of the simplest DFT methods is the local density approximation (LDA), which
assumes the density behaves locally like a uniform electron gas. Generally this does
not lead to an accurate description of molecular properties, but if one makes Ex[ρ] and
Ec[ρ] depend also on the gradient of the density, yielding gradient corrected DFT or
the generalized gradient approximation (GGA), the results are much more accurate.
Finally, the definition of Exc[ρ] also lends itself to semiempirical contributions. One
such parameterization that has been very successful is the B3LYP hybrid DFT method,
which includes 20% exact exchange and involves three semiempirical parameters that
were obtained by fits to experimental thermochemical data (heats of formation, etc.)
of small molecules [12].

11-16 Examples of Ab Initio Calculations

Self-consistent-field and correlated calculations have now been made for a very large
number of systems. The best way to judge the capabilities of these methods is to survey
some of the results.13

13For extensive surveys, see Schaefer [13], Hehre et al. [14], and Raghavachari [15].
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Table 11-2 provides information on energies for a number of atoms in their ground
states. Self-consistent-field energies are presented for three levels of basis set com-
plexity. In the STO single-ζ level, a minimal basis set of one STO per occupied AO is
used, and the energy is minimized with respect to independent variation of every orbital
exponent ζ . The STO double-ζ basis set is similar except that there are two STOs for
each AO, the only restriction being that the STOs have the same spherical harmonics
as the AOs to which they correspond.

The Hartree–Fock energies are estimated by extrapolating from more extensive basis
sets, and represent the limit achievable for the SCF approach using a complete basis
set. We can make the following observations:

1. The improvement in energy obtained when one goes from a single-ζ to a double-ζ
STO basis set is substantial, especially for atoms of higher Z.

2. The agreement between the optimized double-ζ data and the HF energies is quite
good. Even for neon, the error is only about 10−2 a.u. (0.27 eV). Thus, for atoms,
the double-ζ basis is capable of almost exhausting the energy capabilities of a
single-configuration wavefunction.

3. The disagreement between HF and “exact” energies (i.e., the correlation energy)
grows progressively larger down the list. For neon it is almost 0.4 a.u. (10 eV),
which is an unacceptable error in chemical measurements.

One might think that the magnitude of the correlation energy in these examples
would make SCF calculations on heavy atoms useless for quantitative purposes, but this

TABLE 11-2 � Ground-State Energies (in atomic units) for Atoms, as Computed by the SCF
Method and from Experiment

STO

Atom Single ζ a Double ζ a Hartree–Focka Exactb
Correlationc

energy

He −2.8476563 −2.8616726 −2.8616799 −2.9037 −0.0420
Li −7.4184820 −7.4327213 −7.4327256 −7.4774 −0.0447
Be −14.556740 −14.572369 −14.573021 −14.6663 −0.0933
B −24.498369 −24.527920 −24.529057 −24.6519 −0.1228
C −37.622389 −37.686749 −37.688612 −37.8420 −0.1534
N −54.268900 −54.397951 −54.400924 −54.5849 −0.1840
O −74.540363 −74.804323 −74.809370 −75.0607 −0.2513
F −98.942113 −99.401309 −99.409300 −99.7224 −0.3131
Ne −127.81218 −128.53511 −128.54705 −128.925 −0.378
Ar −525.76525 −526.81511 −526.81739 −527.542 −0.725

aFrom Roetti and Clementi [16].
b“Exact” equals experimental with relativistic correction but without correction for Lamb shift. See Veillard
and Clementi [17].

cCorrelation energy is “exact” minus HF energy.
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is not the case. Most frequently we are not concerned with the value of the total energy
of a system so much as with energy changes (e.g., in spectroscopy or in reactions) or
else with other properties such as transition moments (for spectroscopic intensities) or,
in molecular systems, dipole moments.

Let us, therefore, see how well SCF calculations can predict atomic ionization ener-
gies. We have already indicated (Section 11-11) that there are two ways we can get
ionization energies from SCF calculations. The first, and simplest, is to take the vari-
ous −εi , as suggested by Koopmans’ theorem. Table 11-3 shows that this gives only
rough agreement with experimental values for neon. Another way is to do separate SCF
calculations for each excited state produced by removal of an electron from an orbital
(i.e., for each “hole state”) and equate the ionization energies to the energy differences
between these and the neutral ground state (�SCF). This second method requires much
more effort. As Table 11-3 indicates, however, the extra effort leads to great improve-
ment in agreement between theoretical and experimental values. We conclude that SCF
calculations on atoms and ions give quantitatively useful data on ionization energies,
even for ionization out of deep-lying levels. The Koopmans’ theorem approach is less
accurate, although still qualitatively useful.

A related problem is the calculation of energies of excited states of atoms. Weiss
[19] has reported calculations on some of the excited states of carbon, and his results are
summarized in Fig. 11-3. Inspection of this figure reveals that near-HF calculations only
roughly reproduce the energy spectrum, but CI (with four or five configurations) brings
about marked improvement. Weiss has omitted configurations involving excitations of
1s electrons, and so these results ignore correlation energy for the inner-shell electrons.
The agreement suggests that these electrons experience almost no change in correlation
for transitions among these states. Weiss has also calculated oscillator strengths14

associated with atomic transitions and he finds that CI is necessary before reasonable
agreement with experiment is achieved.

TABLE 11-3 � Ionization Energies of Neona

Ionization potential (a.u.)

Ion configuration Koopmans �SCF Experiment

1s2s22p6 32.7723 31.9214 31.98
1s22s2p6 1.9303 1.8123 1.7815
1s22s22p5 0.8503 0.7293 0.7937

aFrom Bagus [18]. The basis set includes 5 s-type and 12 p-type STOs
(4 of each m quantum number). ζ ’s were varied as well as linear coef-
ficients. The neutral ground state gives E = −128.547 a.u. (compare
Table 11-2).

14The oscillator strength is a measure of the probability (i.e., intensity) of a transition. For a transition between
states a and b in a 2n-electron system it is commonly given by the formula
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Figure 11-3 � Transition energies in the C+ ion as calculated by HF, CI, and as measured. (From
Weiss [19].) Ionization from the ground state of C+ occurs at 0.8958 a.u.

In brief, then, the evidence indicates that reasonably accurate atomic ionization
energies can be obtained by high-quality SCF calculations on the neutral and ionized
species (�SCF, not −ε), but that transition energies and intensities require CI sufficient
to account for much of the valence electron correlation.

Before we leave the subject of atoms, it should be pointed out that, for any atom, the
expectation value T̄ of the kinetic energy operator is equal to −Ē if the wavefunction
has been optimized with respect to a scale factor in the coordinates r1, r2, etc. This
relation, called the virial relation, is proved in Appendix 8. It is necessarily satisfied
for any level of calculation that cannot be improved by replacing every ri in ψ by ηri

and allowing η to vary. Since the single- and double-ζ STO solutions have already
been optimized with respect to such scale parameters, they satisfy the virial relation.
Thus, for the beryllium atom, the single-ζ STO value for Ē is (Table 11-2) −14.556740
a.u., and so we know that T̄ = +14.556740 a.u. and V̄ = −29.113480 a.u. for this
wavefunction (since Ē = T̄ + V̄ ). For the double-ζ wavefunction T̄ = +14.572369
a.u., etc. The Hartree–Fock wavefunction is, by definition, the lowest-energy solution
achievable within a restricted (single determinantal15) wavefunction form. Use of a
scale factor does not affect the wavefunction form. Hence, no further lowering of Ē

below the HF level is possible in this way, and the HF energies Ē, T̄ , and V̄ must
satisfy the virial relation also. Finally, the exact energies are the lowest achievable for

15For open-shell systems, more than one determinant may be needed to satisfy symmetry requirements. This
is still considered a HF wavefunction.
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any wavefunction. Again, scaling cannot lower the energy further, so these energies
also satisfy the virial relation.

We turn next to ab initio calculations on molecules. First, let us compare HF and
exact energies for molecules as we did for atoms and see how large the errors due
to correlation are. The results are not too different from those for atoms having the
same number of electrons, as shown in Table 11-4; that is, the correlation energies
for molecules having ten electrons (CH4, NH3, H2O, HF) are about the same as that
for neon, whereas that for the 18-electron molecule H2O2 is more like the correla-
tion energy for argon. But this is only a very rough rule of thumb. We have already
indicated that the correlation energy in a molecule varies with bond length, a factor
not present in atomic problems. In order to get a more meaningful idea of the capa-
bilities of ab initio calculations on molecules, we must look more closely at specific
examples.

A calculation on the OH radical, reported by Cade and Huo [21], provides a good
example of the capabilities of the extended basis set LCAO-MO-SCF technique on a
small molecule. Their final wavefunction for the ground state at an internuclear sep-
aration R = 1.8342 a.u. is presented in Table 11-5. A minimal basis set of STOs for
OH would include 1s, 2s, 2px , 2py , and 2pz STOs on oxygen and a single 1s AO on
hydrogen. Cade and Huo chose a much more extensive basis. Oxygen is the site
for two 1s, two 2s, one 3s, four 2p, one 4f, eight 2pπ , two 3dπ , and four 4fπ STOs.
On hydrogen, there are two 1s, one 2s, one 2pσ , two 2pπ , and two 3dπ STOs. (The
π -type basis functions are indicated in Table 11-5 for only one of the two directions
perpendicular to the O–H axis.) The orbital exponents for all of these STOs have
been optimized, and the resulting wavefunction is of “near-Hartree–Fock” quality. The
optimized ζ values appear in Table 11-5. The STO labeled σ2p′

o is located on oxygen
and has the formula

σ2p′
o = (2.13528)5/2π−1/2r exp(−2.13528r) cos θ (11-49)

TABLE 11-4 � Estimated Hartree–Fock and Correlation Energies for Selected Moleculesa and
Atomsb

Molecule
or atom

E (HF)
(a.u.)

E (correlation)
(a.u.)

Molecule
or atom

E (HF)
(a.u.)

E (correlation)
(a.u.)

H2 −1.132 −0.043 Ne −128.547 −0.378
He −2.862 −0.042 CO −112.796 −0.520
BH3 −26.403 −0.195 N2 −108.994 −0.540
O(1D) −74.729 −0.262 Si (1D) −288.815 −0.505
CH4 −40.219 −0.291 B2H6 −52.835 −0.429
NH3 −56.225 −0.334 S (1D) −397.452 −0.606
H2O −76.067 −0.364 H2O2 −150.861 −0.688
HF −100.074 −0.373 Ar −526.817 −0.725

aFrom Ermler and Kern [20].
bSee Table 11-2.
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TABLE 11-5 � Near Hartree–Fock Wavefunction for the OH Molecule in Its Ground-State
Configuration (1σ 22σ 23σ 21π3) at R = 1.8342 a.u.a

χσ C1σ C2σ C3σ χπ C1π

σ1so (ζ = 7.01681) 0.94291 −0.25489 0.07625 π2po (ζ = 1.26589) 0.37429
σ1so

′ (12.38502) 0.09313 0.00358 −0.00153 π2po
′ (2.11537) 0.46339

σ2so (1.71794) −0.00162 0.46526 −0.20040 π2po
′′ (3.75295) 0.23526

σ2so
′ (2.86331) 0.00418 0.55854 −0.18328 π2po

′′′ (8.41140) 0.01023
σ3so (8.64649) −0.03826 −0.02643 0.00550 π3do (1.91317) 0.02871
σ2po (1.28508) −0.00055 0.05179 0.30153 π4fo (2.19941) 0.00506
σ2po

′ (2.13528) −0.00056 −0.07538 0.37791 π2pH (1.76991) 0.02442
σ2po

′′ (3.75959) 0.00115 0.01874 0.18390 π3dH (3.32513) 0.00282
σ2po

′′′ (8.22819) 0.00059 0.00229 0.00952
σ3do (1.63646) −0.00047 0.02437 0.04676
σ3do

′ (2.82405) 0.00016 0.00845 0.01595
σ4fo (2.26641) −0.00013 0.00882 0.01232
σ1sH (1.31368) 0.00150 −0.04651 0.21061
σ1sH

′ (2.43850) −0.00034 0.09413 0.05113
σ2sH (2.30030) 0.00000 0.07654 0.04539
σ2pH (2.8052) 0.00018 0.01182 0.00999

aFrom Cade and Huo [21].

There are three σ -type MOs and two π -type MOs to accommodate the nine electrons
of this radical. One π -type MO is

φ1πy = 0.37429π2poy + 0.46339π2p′
oy + 0.23526π2p′′

oy

+0.01023π2p′′′
oy + 0.02871π3doy + 0.00506π4foy

+0.02442π2pHy + 0.00282π3dHy (11-50)

and the other occupied π -type MO would be the same except with x instead of y. (The
z axis is coincident with the internuclear axis.) It is evident that writing out the complete
wavefunction given in Table 11-5 would result in a very cumbersome expression. It is
a nontrivial problem to relate an accurate but bulky wavefunction such as this to the
kinds of simple conceptual schemes chemists like to use. One solution is to have a
computer produce contour diagrams of the MOs. Such plots for the valence MOs 2σ ,
3σ , and 1π of Table 11-5 are presented in Fig. 11-4.

Cade and Huo [21] carried out similar calculations for OH at 13 other internuclear
distances and also for the united atom (fluorine) and the separated atoms in the states
with which the Hartree–Fock wavefunction correlates. Some of their data are repro-
duced in Table 11-6. A plot of the electronic-plus-nuclear repulsion energies is given
in Fig. 11-5 along with the experimentally derived curve. It is evident that the near HF
curve climbs too steeply on the right, leading to too “tight” a potential well for nuclear
motion and too small an equilibrium internuclear separation. This comes about because,
as mentioned earlier, the HF solution dissociates to an incorrect mixture of states, some
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Figure 11-4 � Contour plots of HF valence orbitals for OH as given in Table 11-5. (From
Stevens et al. [22].)

TABLE 11-6 � Spectroscopic Parameters and Dipole Moment for OH from Theoretical Curves
and from Experimenta

Wavefunction

Dipole
moment
(debyes)

Re
(a.u.)

De
(eV)

ωe
(cm−1)

ωexe
(cm−1)

αe
(cm−1)

SCF 1.780 1.795 8.831 4062.6 165.09 0.661
CI 1.655 1.838 4.702 3723.6 83.15 0.628
Experimental 1.66± .01 1.834 4.63 3735.2 82.81 0.714

aFrom Stevens et al. [22].

of which are ionic. It is possible to use the HF curve of Fig. 11-5 to derive theoretical
values for molecular constants that can be compared to spectroscopic data. The results
are displayed in Table 11-6, and they reflect the inaccuracy in the HF energy curve.
Included there are the SCF and experimental values for the molecular dipole moment.

We turn now to the behavior of V̄ /T̄ for the HF wavefunctions of Cade and Huo
at various internuclear separations. The data appear in Table 11-7. Observe that the
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Figure 11-5 � Theoretical and experimental energy curves for OH (from Stevens et al. [22].)

value of −2.00000 for V̄ /T̄ occurs at three values of R: 0, ∞, and the point where Ē

is a minimum. At R = 0 and ∞, we are dealing with one or two atoms, for which we
have already seen the HF solution should give V̄ /T̄ =−2. At intermediate R we have
a diatomic molecule, for which the virial relation is (see Appendix 8)

2T̄ + V̄ + R
∂Ē

∂R
= 0 (11-51)

There are three cases to consider. If ∂Ē/∂R = 0, then V̄ /T̄ = −2. This will occur
at the minimum of the potential energy curve (and also at any subsidiary maxima or
minima). If ∂Ē/∂R is negative, then, since V̄ /T̄ = −2 − (R/T̄ )(∂Ē/∂R) and T̄ is

TABLE 11-7 � HF Total Energies and V̄/T̄ for OH as a Function of Internuclear Distancea

R (a.u.) E (a.u.) V̄/T̄ R (a.u.) E (a.u.) V̄/T̄

0 −99.40933 −2.00000 1.90 −75.41837 −2.00129
1.40 −75.34382 −1.99076 2.00 −75.41140 −2.00225
1.50 −75.38378 −1.99398 2.10 −75.40163 −2.00300
1.60 −75.40696 −1.99651 2.25 −75.38372 −2.00380
1.70 −75.41829 −1.99850 2.40 −75.36367 −2.00433
1.75 −75.42065 −1.99933 2.60 −75.33582 −2.00474
1.795 −75.42127 −2.00000 2.80 −75.30822 −2.00492
1.8342 −75.42083 −2.00052 ∞ −75.30939 −2.00000

aFrom Cade and Huo [21].
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positive, V̄ /T̄ will be algebraically higher than −2 (e.g.,−1.98). If ∂Ē/∂R is positive,
V̄ /T̄ will be lower than −2. Thus, the values of V̄ /T̄ in Table 11-7 reflect the slope of
a line tangent to the potential energy curve at each R value.

As mentioned earlier, it is possible to at least partly include the effects of electron
correlation by allowing determinants corresponding to other configurations to mix into
the wavefunction. Such calculations have been performed for the OH radical by several
groups, and the results of Stevens et al. [22] are included in Table 11-6 and Fig. 11-5.
These data come from intermixing 14 configurations. It is evident that the inclusion of
correlation through CI has markedly improved the agreement with experiment.

Many diatomic molecules have been treated at a comparable and higher level, and it
is clear that ab initio calculations including electron correlation are capable of giving
quite accurate molecular data. In cases in which the diatomic system is experimentally
elusive, such calculations may be the best source of data available. A further example of
this is provided in Table 11-8, in which are listed dipole moments for ground and some
excited states of diatomic molecules. The dipole moments computed from near-HF
wavefunctions contain substantial errors. It can be seen that CI greatly improves dipole
moments. It has been observed that inclusion of singly excited configurations is very
important in obtaining an accurate dipole moment.

As a general rule, CID correlates electron motion and therefore has a significant
energy-lowering effect but has little effect on the one-electron distribution or related
properties, like dipole moment. Inclusion of singly excited configurations (CISD)
allows the one-electron distribution to shift in response to the change in calculated
interelectronic repulsion. For example, the value of the ground-state dipole moment
of CO (entry 4 of Table 11-8) is calculated at the CID level to be −0.20D and at the
CISD level to be +0.12D. Thus CID may be a suitable level of computational effort if
the interest is in energy, but CISD is better if the interest is in one-electron properties.

TABLE 11-8 � Calculated and Experimental Dipole Moments of Diatomic Molecules
(in Debyes)

Molecule and polarity State HF at Re
a CI at Re

a Experiment Reference

Li+H− X 1�+ 6.002 5.86 5.83 [23]
C+N− X 2�+ 2.301 1.465 1.45 ± 0.08 [24]
C−N+ B 2�+ — 0.958 1.15 ± 0.08 [24]
C−O+ X 1�+ −0.274 0.12 0.112 ± 0.005 [23]
C+O− A 3� 2.34 1.43 1.37 [25]
C−S+ X 1�+ 1.56 2.03 1.97 [23]
C−S+ A 1� −0.09 0.63 0.63 ± 0.04 [26]
C−H+ X 2� 1.570 1.53 1.46 ± 0.06 [27]
O−H+ X 2� 1.780 1.655 1.66 ± 0.01 [27]
F−H+ X 1� 1.942 1.805 1.797 [27]
N−H+ X 3�− 1.627 1.537 Unknown [27]

aExperimental Re Value used.
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Highly accurate properties can be obtained with more sophisticated electron correlation
methods, such as CCSD(T) or MRCISD.

Other examples of the use of ab initio methods on small molecules are shown in
Table 11-9, which displays some calculated properties for the electronic ground states of
H2 and N2 as a function of method with the cc-pVTZ basis set. In the case of H2, the SCF
bond length and harmonic frequency are both slightly too large compared to experiment,
but the dissociation energy is underestimated by more than 30 kcal/mole due to the lack
of electron correlation. For this two-electron system, the CISD and CCSD methods are
equivalent to a FCI and exhibit marked improvement compared to SCF. The remaining
deviations from experiment at this level of theory can be attributed to the use of the
finite cc-pVTZ basis set. The MP methods show systematic improvement with each
order of perturbation theory, but even a fourth-order treatment of single and double
excitations results in non-negligible errors compared to FCI for this simple system. The
B3LYP hybrid density functional method is observed to yield very reliable properties
in this case.

As might be expected due to its triple bond, the N2 molecule is considerably more
challenging for ab initio methods. With the cc-pVTZ basis set, the SCF dissociation
energy is smaller than experiment by nearly a factor of 2. Appreciable differences are
now observed between the CISD and CCSD results, with the latter being somewhat
closer to experiment. In addition, triple excitations, as measured by the difference
between CCSD and CCSD(T), are relatively important for N2, raising the dissociation
energy by nearly 9 kcal/mole. In contrast to the H2 case, the results for N2 using
perturbation theory (MP2, MP3, MP4) display a disturbing oscillatory behavior. This
type of result with MP methods has been the subject of several previous studies.16

TABLE 11-9 � Calculated Equilibrium Bond Lengths, Harmonic Vibrational Frequencies, and
Equilibrium Dissociation Energies for the Ground States of H2 and N2 with the cc-pVTZ Basis Set
Compared to Experiment

H2 N2

re(Å) ωe(cm−1)

De

(kcal/mole) re(Å) ωe(cm−1)

De

(kcal/mole)

SCF 0.734 4587 83.7 1.067 2732 120.4
CISD 0.743 4409 108.4 1.089 2509 193.1
MP2 0.737 4526 103.6 1.114 2195 228.7
MP3 0.739 4476 107.1 1.090 2532 206.0
MP4 0.741 4441 108.0 1.113 2192 221.2
CCSD 0.743 4409 108.4 1.097 2424 207.7
CCSD(T) 1.104 2346 216.5
B3LYP 0.743 4419 110.3 1.092 2449 229.6
Expt. [28] 0.741 4403 109.5 1.098 2359 228.4

16See Dunning and Peterson [29] and references therein.
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Lastly, it is again the case that the B3LYP method yields relatively accurate results for
this molecule and appears to be comparable in quality to MP2.

The results shown in Table 11-10 explore the choice of basis set with the CCSD and
CCSD(T) methods for the H2 and N2 molecules, respectively. A large dependence on
basis set is observed in each case. The use of a minimal basis set, STO-3G, leads to large
errors since it provides very few virtual orbitals for electron correlation. Just a double-ζ
basis set, either 6-31G∗∗ or cc-pVDZ, is observed to be a great improvement. The
systematic convergence of the correlation consistent basis sets is readily observed in
these results. One should note that increasing the size of the basis set from cc-pVTZ to
cc-pV5Z in N2 results in an increase in De by nearly 9 kcal/mole. This implies that the
highly accurate result for De shown in Table 11-9 for the MP2 level of theory with the
cc-pVTZ basis set was clearly fortuitous. From these results it should be obvious that
errors due to basis set incompleteness can often rival those due to inadequate electron
correlation.

As shown above, the hybrid DFT method B3LYP can be competitive in accuracy to
more computationally expensive methods, such as CCSD(T). In fact, recent benchmark
calculations [30] have shown that for the calculation of thermochemical quantities like
enthalpies of formation, B3LYP exhibits average errors of only 1–5 kcal/mol. While
these are still more than a factor of two larger than the accuracy obtainable with coupled
cluster methods, the much lower computational cost of B3LYP makes it a very attrac-
tive alternative. The accuracy of equilibrium bond lengths and harmonic vibrational
frequencies calculated by B3LYP have also been shown to be very satisfactory. The
accurate calculation of some molecular properties, however, is still a great challenge to
hybrid DFT methods. In particular, reaction activation energies are often too small and
van der Waals interactions can be qualitatively incorrect. Correcting these deficiencies
is the goal of many second generation hybrid DFT functionals.17

We have seen that inclusion of electron correlation often improves the Ē versus
R curve because it allows for variable ionic-covalent character in the wavefunction.

TABLE 11-10 � Dependence on Basis Set Choice for the CCSD and CCSD(T) Properties of H2
and N2, respectively

H2/CCSD N2/CCSD(T)

re(Å) ωe(cm−1)

De

(kcal/mole) re(Å) ωe(cm−1)

De

(kcal/mole)

STO-3G 0.735 5002 128.1 1.190 2145 147.8
6-31G∗∗ 0.738 4504 105.9 1.120 2342 201.6
cc-pVDZ 0.761 4383 103.6 1.119 2339 200.6
cc-pVTZ 0.743 4409 108.4 1.104 2346 216.5
cc-pVQZ 0.742 4403 109.1 1.100 2356 222.9
cc-pV5Z 0.742 4405 109.3 1.099 2360 225.1
Expt. [28] 0.741 4403 109.5 1.098 2359 228.4

17See, for instance, Zhao et al. [31] and Xu et al. [32].
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However, there are some diatomic molecules that maintain a high degree of ionic
character even when the nuclei are quite widely separated. NaCl is an example. For
such systems, the Hartree–Fock energy curve is quite nearly parallel to the exact energy
curve throughout the minimum energy region (i.e., the correlation energy is almost
constant) and the theoretical values of spectroscopic constants agree quite well with
experimental values. (In vacuo, an electron ultimately transfers from Cl− to Na+, and
the experimental curve leads to neutral dissociation products, whereas the HF curve
does not. This theoretical error affects the curve only at large R, however, and so has
little effect on spectroscopic constants.) Schaefer [13] has reviewed this situation.

Of course, ab initio calculations have been performed on molecular systems much
larger than the molecules referred to above. However, as one moves to molecules
having four or more nuclei, one encounters a new difficulty: Integrals now appear that
have the form

〈ab | cd〉 ≡ 〈χa(1)χb(2) |1/r12|χc(1)χd(2)〉 (11-52)

where χa is a basis function located on nucleus a, etc. Such integrals have basis func-
tions on four different nuclei and are referred to as four-center integrals. If the basis
functions χ are STOs, such integrals are relatively slow to evaluate on a computer. If
they are gaussian functions, the computation is much faster, and this is the main reason
for using gaussian basis functions. But the number of such integrals becomes enormous
for a reasonable basis set and a medium sized molecule. In fact, the number of such inte-
grals grows as the fourth power of the number of basis functions. Thus, replacing each
STO by, say, three gaussian functions, will lead to 34 times as many integrals to eval-
uate. Even though such integrals can be evaluated very rapidly, we eventually come to
molecules of such a size that the sheer number of integrals makes for a substantial com-
puting effort. The efficient calculation of molecular integrals continues to be an active
research area, however, and new techniques have now diminished the importance of this
bottleneck with reasonably sized gaussian basis sets on systems up to hundreds of atoms.

Modern quantum chemical programs have made high-quality calculations on rea-
sonably large molecules tractable, but one is always balancing the level of accuracy
against the computer time needed to achieve it. While a Hartree–Fock calculation on
benzene with a cc-pVTZ basis set (264 contracted gaussian functions) might require
just 4 minutes to complete on a given computer, inclusion of electron correlation at
the MP2, CCSD, and CCSD(T) levels would require an additional 0.1, 4.3, and 11 times
4 minutes, respectively.

Numerous calculations have been reported for barriers to internal rotation in various
molecules. The theoretical barriers agree best with experiment for molecules having
threefold symmetry in the rotor. Self-consistent-field values are compared with experi-
mental barrier values in Table 11-11. In every case, the theoretical energy curve predicts
the correct stable conformation and even does reasonably well at predicting barrier
height. The disagreement between different computed values of the barrier for the
same molecule reflects differences in basis sets and, sometimes, differences in choices
for bond length and angle made by different workers. The evidence to date suggests
that ab initio calculations approaching the HF limit will ordinarily be within 20% of
the experimental barrier. Even this level of accuracy is useful because experimental
measurements of barriers in transient molecules or for excited molecules are often very
rough, ambiguous, or nonexistent. Given the favorable cost and relative accuracy of



382 Chapter 11 The SCF-LCAO-MO Method and Extensions

TABLE 11-11 � Internal Rotation Barriers from Experiment and as
Calculated by the LCAO-MO-SCF Method

Barrier (kcal/mole)

Molecule SCF Experiment Reference

CH3–CH3 2.58 2.88 [33]
2.88 — [34]

CH3–NH2 1.12 1.98 [35]
2.02 — [34]

CH3–OH 1.59 1.07 [34]
CH3–CH2F 2.59 3.33 [33]
CH3–N=O 1.05 1.10 [36]
CH3–CH=CH2 1.25 1.99 [37]
cis-CH3–CH=CFH 1.07 1.06 [37]
trans-CH3–CH=CFH 1.34 2.20 [37]
CH3–CH=O 1.09 1.16 [38]

DFT approaches compared to HF, even higher quality results might be expected with
the use of methods such as B3LYP; hence, DFT is often now the method of choice for
calculations on medium to large organic molecules.

A large number of ab initio calculations have been made on clusters of molecules.
Many of these have sought to delineate the distance and angle dependence of the hydro-
gen bond strength between molecules like water or hydrogen fluoride. Xantheas et al.
[39] have reported large basis set MP2 calculations on small water clusters, (H2O)n,
where n ranged from 2–6. These calculations predict that there are four distinct isomers
of the water hexamer (n = 6) whose relative energies lie within ∼1 kcal/mole of each
other. These kinds of results are of great usefulness in defining new effective interac-
tion potentials involving water that can be used in large-scale molecular simulations of
solvation phenomena. Re et al. [40] have calculated the structures and relative energies
of sulfuric acid solvated by 1–5 water molecules using the B3LYP method to provide a
fundamental understanding of acid ionization. In addition to investigating the interac-
tion of water with both the cis and trans conformers of H2SO4, they found that just five
watermoleculeswere sufficient tomakedissociation intoHSO−

4 andH3O+ energetically
favorable. The field of materials science is also benefitting from ab initio calculations,
and studies of metal clusters and their absorbates are currently areas of high interest.

A great deal of attention has been given to the calculation by ab initio methods of
energy surfaces for chemical reactions. For many years, such efforts were limited to
reactions, such as D + H2 → HD + H, which involve only a small number of electrons
and nuclei. Much more complicated systems are now being explored.

In setting out to perform such a calculation, one likes to have some idea of whether the
correlation energy of the system will change significantly with nuclear configuration.
If it does not, then a Hartree–Fock or MCSCF calculation will parallel the true energy
surface. If the correlation energy does change, it is necessary to include some treatment
of electron correlation in the calculation.
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As a rough rule of thumb, one expects the correlation energy to change least when the
reactants, the intermediate or transition state complex, and the products are all closed-
shell systems, hence all approximately equally well described by a single-determinantal
wavefunction. Some calculations on SN2 and radical reactions are summarized in
Table 11-12. It can be seen that the SN2 reactions, which do involve closed-shell
systems in the three stages mentioned above, are fairly insensitive to the inclusion of CI,
whereas the radical reactions undergo extensive change of correlation energy.

The determination of the potential energy surface for the unimolecular rearrange-
ment HOCl � HClO by Peterson et al. [43] provides an example of a very accurate
and exhaustive calculation on a fairly small molecule. Because there are only three
nuclei, there are only three structural variables to explore, so the number of calculations
needed to map out the surface is not too large. (Note that, with three geometric vari-
ables, the energy “surface” is really a four-dimensional hypersurface.) These authors
were also interested in the reactions occurring on this surface, i.e., Cl +OH→HCl +O
and Cl + OH → ClO + H, which required a global representation of the surface that
was constructed from over 1500 individual energies. Since the full energy surface
involves bond breaking processes, MCSCF and MRCISD methods were utilized. Accu-
rate relative energetics between HOCl, HClO, and the various dissociation asymptotes
were obtained by carrying out calculations with a series of three correlation consistent
basis sets at each geometry. This produced an approximate complete basis set (CBS)
MRCISD energy surface. At the MRCISD CBS limit, HOCl was found to be more
stable than HClO by 53.7 kcal/mole and the barrier for HOCl → HClO was predicted
to be 73.5 kcal/mole above the HOCl minimum.

After determining an analytical representation of this surface from the individual
energies, these authors carried out calculations of the full anharmonic vibrational spec-
trum of HOCl and HClO by solving the Schrödinger equation for nuclear motion.
The HClO molecule has not yet been experimentally observed, but these calculations
predict that the lowest three vibrational levels of this species lie below its dissociation
threshold, so it should be detectable.

TABLE 11-12 � Reaction Barrier Energies for Reactions as Calculated by ab Initio Methods

Reaction barrier
(kcal/mole)

Reactant Transition Product Reaction type SCF
CI

(no.config.) Reference

H− + CH4 (CH5)− CH4 + H− SN 2 59.3 55.2(6271) [41]
F− + CH3F (FCH3F)− CH3F + F− SN 2 5.9 5.9(26910) [41]
H• + CH4 CH•

5 CH•
3 + H2 Radical

abstraction
(axial) 35.2 18 (692) [42]

H• + CH4 CH•
5 CH4 + H• Radical

exchange
(inversion) 63.7 41.7(692) [42]
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The decisions regarding basis set and level of correlation can be daunting and in
the past this sometimes discouraged nonspecialists from taking advantage of ab initio
methods. However, there are now a wide range of programs that are available, which
have made ab initio calculations amenable to theoreticians and experimentalists alike.
The best known of these is undoubtedly the GAUSSIAN series of programs originally
developed by the group of J.A. Pople. In this and other programs, one can conveniently
choose from a large variety of available basis sets and methods to carry out energy
evaluations or geometry optimizations and harmonic frequency calculations. These
programs have brought about a revolution in the way that chemical research is done.

For small molecules (∼1–5 nonhydrogen atoms) ab initio methods are sometimes
more precise and reliable than experiment, especially for unstable systems. The saga
of the energy difference between ground and excited CH2 is one of the best known of
these experimental–theoretical confrontations.18

In summary, ab initio calculations provide useful data on bond lengths and angles,
molecular conformation and internal rotation barriers, for ground and excited states
of molecules. They are also very useful for calculating accurate thermochemistry,
ionization energies, oscillator strengths, dipole moments (as well as other one-electron
properties) and excitation energies. If one has access to large blocks of computer time,
ab initio calculations can reveal the nature of energy surfaces pertaining to chemical
reactions or molecular associations, as in fluids. The accuracy of the calculation and
the magnitude of the system are limited ultimately by computer speed and capacity.

11-17 Approximate SCF-MO Methods

At the beginning of this chapter it was stated that ab initio calculations require exact
calculation of all integrals contributing to the elements of the Fock matrix, but we have
seen that, as we encounter systems with more and more electrons and nuclei, the number
of three- and four-center two-electron integrals becomes enormous, driving the cost of
the calculation out of the reach of most researchers. This has led to efforts to find sen-
sible and systematic simplifications to the LCAO-MO-SCF method—simplifications
that remain within the general theoretical SCF framework but shorten computation of
the Fock matrix.

Since many of the multicenter two-electron integrals in a typical molecule have very
small values, the obvious solution to the difficulty is to ignore such integrals. But we
wish to ignore them without having to calculate them to see which ones are small since,
after all, the reason for ignoring them is to avoid having to calculate them. Furthermore,
we want the selection process to be linked in a simple way to considerations of basis set.
That is, when we neglect certain integrals, we are in effect omitting certain interactions
between basis set functions, which is equivalent to omitting some of our basis functions
part of the time. It is essential that we know exactly what is involved here, or we may
obtain strange results such as, for example, different energies for the same molecule
when oriented in different ways with respect to Cartesian coordinates.

A number of variants of a systematic approach meeting the above criteria have been
developed by Pople and co-workers, and these are now widely used. The approximations

18See Goddard [44] and Schaefer [45].



Section 11-17 Approximate SCF-MO Methods 385

are based on the idea of neglect of differential overlap between atomic orbitals in
molecules.

Differential overlap dS between twoAOs, χa and χb, is the product of these functions
in the differential volume element dv:

dS = χa(1)χb(1) dv (11-53)

The only way for the differential overlap to be zero in dv is for χa or χb, or both, to
be identically zero in dv. Zero differential overlap (ZDO) between χa and χb in all
volume elements requires that χa and χb can never be finite in the same region, that is,
the functions do not “touch.” It is easy to see that, if there is ZDO between χa and χb

(understood to apply in all dv), then the familiar overlap integral S must vanish too.
The converse is not true, however. S is zero for any two orthogonal functions even if
they touch. An example is provided by an s and a p function on the same center.

It is a much stronger statement to say that χa and χb have ZDO than it is to say
they are orthogonal. Indeed, it is easy to think of examples of orthogonal AOs but
impossible to think of any pair of AOs separated by a finite or zero distance and having
ZDO. Because AOs decay exponentially, there is always some interpenetration.

The attractive feature of the ZDO approximation is that it causes all three- and four-
center integrals to vanish. Thus, in a basis set of AOs χ having ZDO, the integral
〈χa(1)χb(2) |1/r12|χc(1)χd(2)〉 will vanish unless a ≡ c and b ≡ d. This arises from
the fact that, if a �= c, χ∗

a (1)χc(1) is identically zero, and this forces the integrand to
vanish everywhere, regardless of the value of (1/r12)χ∗

b (2)χd(2).
It is not within the scope of this book to give a detailed description or critique of

the numerous computational methods based on ZDO assumptions. An excellent mono-
graph [46] on this subject including program listings is available. Some of the acronyms
for these methods are listed in Table 11-13. In general, these methods have been popu-
lar because they are relatively cheap to use and because they predict certain properties
(bond length, bond angle, energy surfaces, electron spin resonance hyperfine splittings,
molecular charge distributions, dipole moments, heats of formation) reasonably well.
However, they generally do make use of some parameters evaluated from experimental
data, and some methods are biased toward good predictions of some properties, while
other methods are better for other properties. For a given type of problem, one must
exercise judgment in choosing a method.

As an example of the sort of chemical system that becomes accessible to study using
such methods, we cite the valence-electron CNDO/2 calculations of Maggiora [56]
on free base, magnesium, and aquomagnesium porphines. Such calculations enable
us to examine the geometry of the complex (i.e., is the metal ion in or out of the
molecular plane, and how is the water molecule oriented?), the effects of the metal
ion on ionization energies, spectra, and orbital energy level spacings, and the detailed
nature of charge distribution in the system.

Use of a combination of methods is often convenient. Novoa andWhangbo [57] stud-
ied theoretically the relative stabilities of di- and triamides in various hydrogen-bonded
and nonhydrogen-bonded conformations, in both the absence and presence of solvent
(CH2Cl2) molecules. There are many structural parameters to optimize in each of
the conformations, and so high-level ab initio calculations for energy minimization of
each class of structure would be prohibitively expensive. Instead, AM1 was used to
determine the optimum geometry for each configuration, and then ab initio calculations
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TABLE 11-13 � Acronyms for Common Approximate SCF Methods

Acronym Description

CNDO/1 Complete neglect of differential overlap. Parametrization Scheme no. 1
(Pople and Segal [47]).

CNDO/2 Parametrization scheme no. 2. Considered superior to CNDO/1 (Pople
and Segal [48]).

CNDO/BW Similar to above with parameters selected to give improved molecular
structures and force constants. (See Pulfer and Whitehead [49] and
references therein.)

INDO Intermediate neglect of differential overlap. Differs from CNDO in that
ZDO is not assumed between AOs on the same center in evaluating
one-center integrals. This method is superior to CNDO methods for
properties, such as hyperfine splitting, or singlet-triplet splittings,
which are sensitive to electron exchange (Pople et al. [50]).

MINDO/3 Modified INDO, parameter scheme no. 3. Designed to give accurate
heats of formation (Bingham et al. [51] and also Dewar [52]).

NDDO Neglect of diatomic differential overlap. Assumes ZDO only between
AOs on different atoms (Pople et al. [53]).

MNDO Modified neglect of diatomic overlap. A semiempirically parametrized
version of NDDO. Yields accurate heats of formation and many
other molecular properties, but fails to successfully account for
hydrogen bonding (Dewar and Thiel [54]).

AM1 “Austin Model 1.” A more recent parametrization of NDDO that
overcomes the weakness of MNDO in that it successfully treats
hydrogen bonding. (Dewar et al. [55].)

(e.g., 6-31G∗∗ with MP2) were done for a few near-optimum geometries for each con-
formation to check the AM1 results.

Additional helpful information on standard programs available at ab initio and
semiempirical levels—where to get them, how to use them, what they have been used
for—is available in the very well-written reference handbook by Clark [58].

11-17.A Problems

11-1. Use the data in Table 11-3 to calculate the theoretical transition energies for Ne+
when 1s and 2s electrons are excited into the 2p level. The experimental values
are 2p ← 2s, 0.989 a.u.; 2p ← 1s, 31.19 a.u.

11-2. Use the data in Table 11-1 to estimate separately the errors in ionization energies
for the three states due to

a) omission of electron correlation.
b) failure to allow electronic relaxation.

11-3. In Section 11-11, it is argued that neglect of electron correlation and electronic
relaxation in setting I 0

k = −εk causes errors of opposite sign that partly cancel.
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Would this also occur when Koopmans’ theorem is used to predict electron affini-
ties? Why?

11-4. Demonstrate that, if

D1 =
∣∣∣∣∣
a c

b d

∣∣∣∣∣ and D2 =
∣∣∣∣∣
a e

b f

∣∣∣∣∣ then D1 + λD2 =
∣∣∣∣∣
a c + λe

b d + λf

∣∣∣∣∣

11-5. A singly excited configuration ψ1 differs by one orbital from the ground state
ψ0 and also by one orbital from certain doubly excited configurations ψ2.
Brillouin’s theorem gives 〈ψ0|Ĥ |ψ1〉= 0, but not 〈ψ1|Ĥ |ψ2〉= 0. Where does
the attempted proof to show that 〈ψ1|Ĥ |ψ2〉 = 0 break down?

11-6. Show that, if ψ = c0ψ0 + c1ψ1 + c2ψ2 + · · · + cnψn, and if ψ is to be an
eigenfunction of Â with eigenvalue a1, then it is necessary that all the ψi(i =
0, . . . , n) also be eigenfunctions of Â with eigenvalues a1.

11-7. How many distinct four-center coulomb and exchange integrals result when one
has four nuclei, each being the site of five basis functions? Make no assumptions
about symmetry or basis function equivalence or electron spin.

11-8. For a homonuclear diatomic molecule, which of the following singly excited
configurations would be prevented for reasons of symmetry from contribut-
ing to a CI wavefunction for which the main “starting configuration” is
1σ 2

g 1σ 2
u 2σ 2

g 1π4
u ?

a) 1σ 2
g 1σ 2

u 2σ 2
g 1π3

u 1πg (i.e., 1πu → 1πg)
b) 2σg → 3σg
c) 2σg → 1πg
d) 1σg → 3σg

11-9. Write down the hamiltonian operator for electrons in the water molecule. Use
summation signs with explicit index ranges. Use atomic units.

11-10. An SCF calculation on ground state H2 at R = 1.40 a.u. using a minimal basis
set gives a σg and a σu MO having energies

εσg = −0.619 a.u. εσu = +0.401 a.u.

The nonvanishing two-electron integrals over these MOs are
∫ ∫

σg(1)σg(2)(1/r12)σg(1)σg(2)dv(1)dv(2) = 0.566 a.u.

∫ ∫
σg(1)σu(2)(1/r12)σg(1)σu(2)dv(1)dv(2) = 0.558 a.u.

∫ ∫
σg(1)σu(2)(1/r12)σg(2)σu(1)dv(1)dv(2) = 0.140 a.u.

∫ ∫
σu(1)σu(2)(1/r12)σu(1)σu(2)dv(1)dv(2) = 0.582 a.u.

a) Write down the Slater determinant for the ground state of H2.
b) Calculate the SCF electronic energy for H2 at R = 1.40 a.u.
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c) Calculate the total (electronic plus nuclear repulsion) energy for H2.
d) What is the bond energy for H2 predicted by this calculation, assuming that

the minimum total energy occurs at R = 1.40 a.u.?
e) Estimate the (vertical) ionization energy for H2.
f) What is the value of the kinetic-plus-nuclear-attraction energy for one elec-

tron in ground-state H2 according to this calculation?
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