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Thus the two eigenvalues of O are

w, = 0, cos* by + 05, sin* b, + 0, sin 20, (1.106a)
and
w, = 0, sin* B, + 0,, cos* Oy, — O, sin 20, (1.106b)
Upon comparison of Egs. (1.104) and (1.89), we find the two eigenvectors
to be
c1\ _ [cosb, {107
cd)  \sin6, (1.1072)
and

2 .
C1 sin 0,
= 1.107b
(c%) (—cos 90) (1.1070)

It should be mentioned that the Jacobi method for diagonalizing N x N
matrices 1§ a generalization of the above procedure. The basic idea of this
method is to eliminate iteratively the off-diagonal elements of a matrix by
repeated applications of orthogonal transformations, such as the ones we
have considered here.
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Exercise 1.11 Consider the matrices

Find numerical values for the eigenvalues and corresponding eigenvectors of
these matrices by a) the secular determinant approach: b) the unitary trans-
formation approach. You will see that approach (b) is much easier.

1.1.7 Functions of Matrices

Given a Hermitian matrix A, we can define a function of A. 1.e.. f(A), in much
the same way we define functions f{x) of a simple variable x. For example,
the square root of a matrix A, which we denote by A%, is simply that matrix
which when multiplied by itself gives A, i.e.,

Al ZAY2 = A (1.108)

The sine or the exponential of a matrix are defined by the Taylor series of
the function, e.g.,

1 L, 1.,
exp(A) =1+ — A+ A%+ A% +



22 MODERN QUANTUM CHEMISTRY

Or In general

ad

fA) =Y c,A” (1.109)

n=40

After these definitions, we are still faced with the problem of calculating A*/?
or exp (A). If A is a diagonal matrix

(A);; = a;0;
everything is simple, since
aj
(A)" = Oaz | / (1.110)
. "
so that
Y. Cud
© 7y 0
fA)= Y A" = L ot
n=90 0
D, Cndly
flay) \
_ of(az) 9 (1.111)
f (aN)/
Similarly, the square root of a diagonal matrix is
a;’?
1/2
A2 0 42 0 (1.112)
ai/?

What do we do if A is not diagonal? Since A is Hermitian, we can always
find a unitary transformation that diagonalizes it, i.e.,

UTAU = a (1.113a)
The reverse transformation that “undiagonalizes” a 1s
A = UalUt (1.113b)

Now notice that
A’ = UaUUaU' = Ua?U!
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or in general
= Ua"U" (1.114)

so that
J(A) = Z C,A" = (Z c,a )UT Uf(a)U!
fla,)

f(az) 0
ol

Ut (1.115)
f(an)

Thus to calculate any function of a Hermitian matrix A, we first diagonalize
A to obtain a, the diagonal matrix containing all the eigenvalues of A. We
then calculate f(a), which is easy because a 1s diagonal. Finally we “undi-
agonalize” f(a) using (1.113b) to obtain (1.115). For example, we can find
the square root of a matrix A as

Al/Z Ual!ZU‘l‘
SINCe
AVZANZ = Ual2UtUal/?Ut = Ual/Zal’?ut = UaUT = A

If the above procedure were to yield a result for f(A) that was infinite, then
f(A) does not exist. For example, if we try to calculate the inverse of a matrix
A that has a zero eigenvalue (say g; = 0), then f(a;) = 1/a; = o0 and so A™*
does not exist. As Exercise 1.12(a) shows, the determinant of a matrix is
just the product of its eigenvalues. Thus if one of the eigenvalues of A is
zero, det(A) is zero and the above argument shows that A™! does not exist
This same result was obtained in a different way in Exercise 1.7.

—_—

Exercise 1.12 Given that
Qg
a, 0

0

U'AU =a = or Ac®=agc* oa=1,2,...,N

Show that

a. det(A") = a'ja’, - - - ay.

N
b. trA"= ) d.
a=1
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c. If Glw) = (w1 — A)™" then

A" L N P &
Uiin:I . Ci CJ

(G(w))il — Z Z

a:lw—'—ai izlw—aj

Show that using Dirac notation this can be rewritten as

Gilay<al i

W — d,

(G());, = <i|[Fw)|j> =

o

As an interesting application of this relation consider the problem of solving
the following set of inhomogeneous Imear equations

(wl — Ax =¢
for x The most straightforward way to proceed is to invert wl — A. LeE.,
x = (wl — A) 'e = Glw)e

If we want x as a function of @ we need to invert the matrix for each value
of «o. However, if we diagonalize A, we can write

U U¥*c
v, =Y (Glw),c,=), — !
- ] 1 = (U—"'ﬂa

It is now computationally simple to evaluate x as a function of w.

— -_— ——  — - J— — -

Exercise 1.13 If
A= (a b)
b a

) — (%z[ﬂa +b)+ fla—b)] [ fla+b)— fla— b)])
W[ fla+b)— fla—b] 3[fla+b)+ fla—b)]

show that

1.2 ORTHOGONAL FUNCTIONS, EIGENFUNCTIONS,
AND OPERATORS

We know from the theory of Fourier series that it is possible to represent
a sufficiently well-behaved function f(x) on some interval as an infinite
linear combination of sines and cosines with coetlicients that depend on the
function. Thus any such function can be represented by specifying these
coefficients. This seems very similar to the idea of expanding a vector in
terms of a set of basis vectors. The purpose of this section 1s to explore this
similarity. We consider an infinite set of functions Wix), i=1,2,...} that



